This web page was created programmatically, to learn the article in its unique location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09607-6
and if you wish to take away this text from our website please contact us
Quasdorf, Ok. W. & Overman, L. E. Catalytic enantioselective synthesis of quaternary carbon stereocentres. Nature 516, 181–191 (2014).
Zeng, X.-P., Cao, Z.-Y., Wang, Y.-H., Zhou, F. & Zhou, J. Catalytic enantioselective desymmetrization reactions to all-carbon quaternary stereocenters. Chem. Rev. 116, 7330–7396 (2016).
Feng, J., Holmes, M. & Krische, M. J. Acyclic quaternary carbon stereocenters through enantioselective transition metallic catalysis. Chem. Rev. 117, 12564–12580 (2017).
Wu, Y. & Wang, P. Silicon-stereogenic monohydrosilane: synthesis and functions. Angew. Chem. Int. Ed. 61, e202205382 (2022).
Xu, L.-W., Li, L., Lai, G.-Q. & Jiang, J.-X. The latest synthesis and utility of silicon-stereogenic silanes: a renewed and vital problem in uneven synthesis. Chem. Soc. Rev. 40, 1777–1790 (2011).
Grabulosa, A., Granell, J. & Muller, G. Preparation of optically pure P-stereogenic trivalent phosphorus compounds. Coord. Chem. Rev. 251, 25–90 (2007).
Dutartre, M., Bayardon, J. & Jugé, S. Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chem. Soc. Rev. 45, 5771–5794 (2016).
Fernández, I. & Khiar, N. Recent developments within the synthesis and utilization of chiral sulfoxides. Chem. Rev. 103, 3651–3706 (2003).
Han, J., Soloshonok, V. A., Klika, Ok. D., Drabowicz, J. & Wzorek, A. Chiral sulfoxides: advances in uneven synthesis and issues with the correct willpower of the stereochemical end result. Chem. Soc. Rev. 47, 1307–1350 (2018).
Walsh, M. P., Phelps, J. M., Lennon, M. E., Yufit, D. S. & Kitching, M. O. Enantioselective synthesis of ammonium cations. Nature 597, 70–76 (2021).
Luo, Z. et al. Ionic hydrogen bond-assisted catalytic building of nitrogen stereogenic heart through formal desymmetrization of distant diols. Angew. Chem. Int. Ed. 63, e202404979 (2024).
Bhadra, S. & Yamamoto, H. Catalytic uneven synthesis of N-chiral amine oxides. Angew. Chem. Int. Ed. 55, 13043–13046 (2016).
Chattopadhyay, A. Ok. & Hanessian, S. Recent progress within the chemistry of daphniphyllum alkaloids. Chem. Rev. 117, 4104–4146 (2017).
Yuan, R. et al. The first direct synthesis of chiral Tröger’s bases catalyzed by chiral glucose-containing pyridinium ionic liquids. Chem. Eng. J. 316, 1026–1034 (2017).
Huang, S. et al. Organocatalytic enantioselective building of chiral azepine skeleton bearing multiple-stereogenic parts. Angew. Chem. Int. Ed. 60, 21486–21493 (2021).
Ma, C., Sun, Y., Yang, J., Guo, H. & Zhang, J. Catalytic uneven synthesis of Tröger’s base analogues with nitrogen stereocenter. ACS Cent. Sci. 9, 64–71 (2023).
Yu, T. et al. Immobilizing stereogenic nitrogen heart in doubly fused triarylamines by means of palladium-catalyzed uneven C−H activation/seven-membered-ring formation. ACS Catal. 13, 9688–9694 (2023).
Annunziata, R., Fornasier, R. & Montanari, F. Compounds with molecular asymmetry due solely to a tercovalent non-bridgehead nitrogen atom: optically lively N-chloro-2,2-diphenylaziridine. J. Chem. Soc. Chem. Commun. 1972, 1133–1134 (1972).
Forni, A., Moretti, I., Prosyanik, A. V. & Torre, G. Optically lively trifluoromethylcarbinols as chiral solvating brokers for uneven transformations at a ring-nitrogen atom. J. Chem. Soc. Chem. Commun. 1981, 588–590 (1981).
Bucciarelli, M., Forni, A., Moretti, I. & Torre, G. Optically lively trifluoromethylcarbinols as chiral solvating brokers for uneven transformations at a ring-nitrogen atom. Synthesis of optically lively N-chloroaziridines and stereochemical points of chiral solvent-aziridine solute complexes. J. Org. Chem. 48, 2640–2644 (1983).
Shustov, G. V. et al. Asymmetric nitrogen. 72. Geminal programs. 46. N-chlorooxaziridines: optical activation, absolute configuration, and chiroptical properties. J. Am. Chem. Soc. 111, 4210–4215 (1989).
Montanari, F., Moretti, I. & Torre, G. Asymmetric introduction at trivalent nitrogen. Optically lively 2-methyl-3,3-diphenyloxaziridine, a compound with molecular asymmetry due solely to the nitrogen atom. Chem. Commun. 1968, 1694–1695 (1968).
Boyd, D. R. Optically lively oxaziridines. Tetrahedron Lett. 9, 4561–4564 (1968).
Kostyanovsky, R. G., Rudchenko, V. F., Shtamburg, V. G., Chervin, I. I. & Nasibov, S. S. Asymmetrical nonbridgehead nitrogen—XXVI. Synthesis, configurational stability, and determination of N,N-dialkoxyamines into antipodes. Tetrahedron 37, 4245–4254 (1981).
Smith, O. et al. Control of stereogenic oxygen in a helically chiral oxonium ion. Nature 615, 430–435 (2023).
Porto, C. M., de Barros, G. A., Santana, L. C., Moralles, A. C. & Morgon, N. H. Ammonia quantum tunneling in chilly rare-gas He and Ar clusters and factorial design strategy for methodology analysis. J. Mol. Model. 28, 293 (2022).
Adams, R. & Cairns, T. L. Attempts to organize optically lively ethyleneimine derivatives containing an uneven nitrogen atom. J. Am. Chem. Soc. 61, 2464–2467 (1939).
Dunlop, H. G. & Tucker, S. H. Attempts to organize optically lively tervalent nitrogen compounds. Part I. Syntheses of 1:9-phenylenecarbazole and derivatives. J. Chem. Soc. 1939, 1945–1956 (1939).
Brois, S. J. Aziridines. XII. Isolation of a secure nitrogen pyramid. J. Am. Chem. Soc. 90, 508–509 (1968).
Rauk, A., Allen, L. C. & Mislow, Ok. Pyramidal inversion. Angew. Chem. Int. Ed. 9, 400–414 (1970).
Zaitseva, S. & Köhler, V. Pyramidal stereogenic nitrogen facilities (SNCs). Synthesis 57, 1237–1254 (2025).
Shtamburg, V. G. et al. Reactions of N-chloro-N-alkoxy-tert-alkylamines with isobutylene and methanol. Russ. Chem. Bull. 40, 951–954 (1991).
Rudchenko, V. F. & Kostyanovskii, R. G. Geminal oxygen–nitrogen–halogen programs. N-halohydroxylamine derivatives. Russ. Chem. Rev. 67, 179–192 (1998).
Wendlandt, A. E., Vangal, P. & Jacobsen, E. N. Quaternary stereocentres through an enantioconvergent catalytic SN1 response. Nature 556, 447–451 (2018).
Singh, V. Ok. et al. Taming secondary benzylic cations in catalytic uneven SN1 reactions. Science 382, 325–329 (2023).
Zhang, X. et al. An enantioconvergent halogenophilic nucleophilic substitution (SN2X) response. Science 363, 400–404 (2019).
Lovinger, G. J., Sak, M. H. & Jacobsen, E. N. Catalysis of an SN2 pathway by geometric preorganization. Nature 632, 1052–1059 (2024).
Denmark, S. E., Kuester, W. E. & Burk, M. T. Catalytic, uneven halofunctionalization of alkenes—a vital perspective. Angew. Chem. Int. Ed. 51, 10938–10953 (2012).
Akiyama, T., Itoh, J., Yokota, Ok. & Fuchibe, Ok. Enantioselective Mannich-type response catalyzed by a chiral Brønsted acid. Angew. Chem. Int. Ed. 43, 1566–1568 (2004).
Uraguchi, D. & Terada, M. Chiral Brønsted acid-catalyzed direct Mannich reactions through electrophilic activation. J. Am. Chem. Soc. 126, 5356–5357 (2004).
Akiyama, T. Stronger Brønsted acids. Chem. Rev. 107, 5744–5758 (2007).
Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete area information to uneven BINOL-phosphate derived Brønsted acid and metallic catalysis: historical past and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing and metallic phosphates. Chem. Rev. 114, 9047–9153 (2014).
Reisman, S. E., Doyle, A. G. & Jacobsen, E. N. Enantioselective thiourea-catalyzed additions to oxocarbenium ions. J. Am. Chem. Soc. 130, 7198–7199 (2008).
Banik, S. M., Levina, A., Hyde, A. M. & Jacobsen, E. N. Lewis acid enhancement by hydrogen-bond donors for uneven catalysis. Science 358, 761–764 (2017).
Zhou, H. et al. Organocatalytic stereoselective cyanosilylation of small ketones. Nature 605, 84–89 (2022).
Wang, M. et al. Asymmetric hydrogenation of ketimines with minimally completely different alkyl teams. Nature 631, 556–562 (2024).
Frisch, M. J. et al. Gaussian 16, Revision A.03 (Gaussian, 2016).
Becke, A. D. Density‐purposeful thermochemistry. III. The function of actual change. J. Chem. Phys. 98, 5648–5652 (1993).
Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy components right into a purposeful of the electron density. Phys. Rev. B 37, 785–789 (1988).
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A constant and correct ab initio parametrization of density purposeful dispersion correction (DFT-D) for the 94 parts H–Pu. J. Chem. Phys. 132, 154104 (2010).
Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping perform in dispersion corrected density purposeful principle. J. Comput. Chem. 32, 1456–1465 (2011).
Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).
Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation mannequin based mostly on solute electron density and on a continuum mannequin of the solvent outlined by the majority dielectric fixed and atomic floor tensions. J. Phys. Chem. B 113, 6378–6396 (2009).
Bickelhaupt, F. M. & Houk, Ok. N. Analyzing response charges with the distortion/interplay‐activation pressure mannequin. Angew. Chem. Int. Ed. 56, 10070–10086 (2017).
Duan, M. et al. Chiral phosphoric acid catalyzed conversion of epoxides into thiiranes: mechanism, stereochemical mannequin, and new catalyst design. Angew. Chem. Int. Ed. 61, e202113204 (2022).
This web page was created programmatically, to learn the article in its unique location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09607-6
and if you wish to take away this text from our website please contact us
