A travelling-wave parametric amplifier isolator

This web page was created programmatically, to learn the article in its unique location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41928-025-01489-w
and if you wish to take away this text from our web site please contact us


  • Aumentado, J. Superconducting parametric amplifiers: the cutting-edge in Josephson parametric amplifiers. IEEE Microw. Mag. 21, 45–59 (2020).

    Article 

    Google Scholar
     

  • Esposito, M., Ranadive, A., Planat, L. & Roch, N. Perspective on touring wave microwave parametric amplifiers. Appl. Phys. Lett. 119, 120501 (2021).

    Article 

    Google Scholar
     

  • Blais, A., Grimsmo, A. L., Girvin, S. M. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Eichler, C., Bozyigit, D. & Wallraff, A. Characterizing quantum microwave radiation and its entanglement with superconducting qubits utilizing linear detectors. Phys. Rev. A 86, 032106 (2012).

    Article 

    Google Scholar
     

  • Nakamura, Y. & Yamamoto, T. Breakthroughs in photonics 2012: breakthroughs in microwave quantum photonics in superconducting circuits. IEEE Photon. J. 5, 0701406 (2013).

    Article 

    Google Scholar
     

  • Fraudet, D. et al. Direct detection of down-converted photons spontaneously produced at a single Josephson junction. Phys. Rev. Lett. 134, 013804 (2025).

    Article 

    Google Scholar
     

  • Stehlik, J. et al. Fast cost sensing of a cavity-coupled double quantum dot utilizing a Josephson parametric amplifier. Phys. Rev. Appl. 4, 014018 (2015).

    Article 

    Google Scholar
     

  • Krantz, P. et al. A quantum engineer’s information to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

    Article 

    Google Scholar
     

  • Schaal, S. et al. Fast gate-based readout of silicon quantum dots utilizing Josephson parametric amplification. Phys. Rev. Lett. 124, 067701 (2020).

    Article 

    Google Scholar
     

  • Elhomsy, V. et al. Broadband parametric amplification for multiplexed SiMOS quantum dot indicators. Preprint at (2023).

  • Teufel, J. D. et al. Sideband cooling of micromechanical movement to the quantum floor state. Nature 475, 359–363 (2011).

    Article 

    Google Scholar
     

  • Bienfait, A. et al. Reaching the quantum restrict of sensitivity in electron spin resonance. Nat. Nanotechnol. 11, 253–257 (2016).

    Article 

    Google Scholar
     

  • Smith, D. M. P., Bakker, L., Witvers, R. H., Woestenburg, B. E. M. & Palmer, Okay. D. Low noise amplifier for radio astronomy. Int. J. Microw. Wirel. Technol. 5, 453–461 (2013).

    Article 

    Google Scholar
     

  • Bockstiegel, C. et al. Development of a broadband NbTiN touring wave parametric amplifier for MKID readout. J. Low Temp. Phys. 176, 476–482 (2014).

    Article 

    Google Scholar
     

  • Jeong, J. et al. Search for invisible axion darkish matter with a multiple-cell haloscope. Phys. Rev. Lett. 125, 221302 (2020).

    Article 

    Google Scholar
     

  • Braine, T. et al. Extended seek for the invisible axion with the axion darkish matter experiment. Phys. Rev. Lett. 124, 101303 (2020).

    Article 

    Google Scholar
     

  • Grenet, T. et al. The Grenoble Axion Haloscope platform (GrAHal): growth plan and first outcomes. Preprint at (2021).

  • The MADMAX Collaboration. Simulating MADMAX in 3D: necessities for dielectric axion haloscopes. J. Cosmol. Astropart. Phys. 2021, 034 (2021).

  • Di Vora, R. et al. Search for galactic axions with a touring wave parametric amplifier. Phys. Rev. D 108, 062005 (2023).

    Article 

    Google Scholar
     

  • Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).

    Article 

    Google Scholar
     

  • Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Macklin, C. et al. A close to–quantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307–310 (2015).

    Article 

    Google Scholar
     

  • Malnou, M. et al. Three-wave mixing kinetic inductance traveling-wave amplifier with near-quantum-limited noise efficiency. PRX Quantum 2, 010302 (2021).

    Article 

    Google Scholar
     

  • Planat, L. et al. Photonic-crystal Josephson traveling-wave parametric amplifier. Phys. Rev. X 10, 021021 (2020).


    Google Scholar
     

  • Ranadive, A. et al. Kerr reversal in Josephson meta-material and touring wave parametric amplification. Nat. Commun. 13, 1737 (2022).

    Article 

    Google Scholar
     

  • Fadavi Roudsari, A. et al. Three-wave mixing traveling-wave parametric amplifier with periodic variation of the circuit parameters. Appl. Phys. Lett. 122, 052601 (2023).

    Article 

    Google Scholar
     

  • Kamal, A., Clarke, J. & Devoret, M. H. Noiseless non-reciprocity in a parametric lively machine. Nat. Phys. 7, 311–315 (2011).

    Article 

    Google Scholar
     

  • Abdo, B., Sliwa, Okay., Frunzio, L. & Devoret, M. Directional amplification with a Josephson circuit. Phys. Rev. X 3, 031001 (2013).


    Google Scholar
     

  • Metelmann, A. & Clerk, A. A. Nonreciprocal photon transmission and amplification by way of reservoir engineering. Phys. Rev. X 5, 021025 (2015).


    Google Scholar
     

  • Sliwa, Okay. M. et al. Reconfigurable Josephson circulator/directional amplifier. Phys. Rev. X 5, 041020 (2015).


    Google Scholar
     

  • Lecocq, F. et al. Nonreciprocal microwave sign processing with a field-programmable Josephson amplifier. Phys. Rev. Appl. 7, 024028 (2017).

    Article 

    Google Scholar
     

  • Ranzani, L. et al. Wideband isolation by frequency conversion in a Josephson-junction transmission line. Phys. Rev. Appl. 8, 054035 (2017).

    Article 

    Google Scholar
     

  • Chapman, B. J. et al. Widely tunable on-chip microwave circulator for superconducting quantum circuits. Phys. Rev. X 7, 041043 (2017).


    Google Scholar
     

  • Zhang, D. & Tsai, Jaw-Shen Magnetic-free traveling-wave nonreciprocal superconducting microwave elements. Phys. Rev. Appl. 15, 064013 (2021).

    Article 

    Google Scholar
     

  • Beck, M. A., Selvanayagam, M., Carniol, A., Cairns, S. & Mancini, C. P. Wideband Josephson parametric isolator. Phys. Rev. Appl. 20, 034054 (2023).

    Article 

    Google Scholar
     

  • Kwende, R., White, T. & Naaman, O. Josephson parametric circulator with same-frequency sign ports, 200 MHz bandwidth, and excessive dynamic vary. Appl. Phys. Lett. 122, 224001 (2023).

    Article 

    Google Scholar
     

  • Ramos, T., Gómez-León, Á., García-Ripoll, J. J., González-Tudela, A. & Porras, D. Directional Josephson traveling-wave parametric amplifier by way of non-Hermitian topology. Preprint at (2022).

  • Naghiloo, M., Peng, Okay., Ye, Y., Cunningham, G. & O’Brien, Okay. P. Broadband microwave isolation with adiabatic mode conversion in coupled superconducting transmission traces. Preprint at (2021).

  • Ranzani, L. & Aumentado, José A geometrical description of nonreciprocity in coupled two-mode programs. New J. Phys. 16, 103027 (2014).

    Article 
    MATH 

    Google Scholar
     

  • Frattini, N. E. et al. 3-wave mixing Josephson dipole component. Appl. Phys. Lett. 110, 222603 (2017).

    Article 

    Google Scholar
     

  • Frattini, N. E., Sivak, V. V., Lingenfelter, A., Shankar, S. & Devoret, M. H. Optimizing the nonlinearity and dissipation of a SNAIL parametric amplifier for dynamic vary. Phys. Rev. Appl. 10, 054020 (2018).

    Article 

    Google Scholar
     

  • Esposito, M. et al. Observation of two-mode squeezing in a touring wave parametric amplifier. Phys. Rev. Lett. 128, 153603 (2022).

    Article 

    Google Scholar
     

  • Zorin, A. B. Quasi-phasematching in a poled Josephson traveling-wave parametric amplifier with three-wave mixing. Appl. Phys. Lett. 118, 222601 (2021).

    Article 

    Google Scholar
     

  • Levochkina, A. Y. et al. Investigating pump harmonics technology in a SNAIL-based touring wave parametric amplifier. Supercond. Sci. Technol. 37, 115021 (2024).

    Article 

    Google Scholar
     

  • Planat, L. et al. Fabrication and characterization of aluminum SQUID transmission traces. Phys. Rev. Appl. 12, 064017 (2019).

    Article 

    Google Scholar
     

  • Ranadive, A. Nonlinear Quantum Optics with Josephson Meta-Materials. PhD thesis, Univ. Grenoble Alpes (2023).

  • Whiteley, S. R. Josephson junctions in SPICE3. IEEE Trans. Magn. 27, 2902–2905 (1991).

    Article 

    Google Scholar
     

  • Ranzani, L., Spietz, L., Popovic, Z. & Aumentado, José Two-port microwave calibration at millikelvin temperatures. Rev. Sci. Instrum. 84, 034704 (2013).

    Article 

    Google Scholar
     

  • Ranzani, L. et al. Kinetic inductance traveling-wave amplifiers for multiplexed qubit readout. Appl. Phys. Lett. 113, 242602 (2018).

    Article 

    Google Scholar
     

  • Babenko, A. A. et al. Cryogenic decade-passband superconducting built-in diplexer. In Proc. IEEE/MTT-S International Microwave Symposium 156–159 (IEEE, 2022).

  • Zorin, A. B. Josephson traveling-wave parametric amplifier with three-wave mixing. Phys. Rev. Appl. 6, 034006 (2016).

    Article 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its unique location you may go to the hyperlink bellow:
    https://www.nature.com/articles/s41928-025-01489-w
    and if you wish to take away this text from our web site please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *