This web page was created programmatically, to learn the article in its unique location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41598-025-24285-0
and if you wish to take away this text from our web site please contact us
Russo, A. & Burdette, J. E. Isolation of fallopian tube epithelium for evaluation of cilia beating frequency (CBF). Methods Mol. Biol. 2424, 179–187. (2022).
Ulrich, N. D. et al. Cellular heterogeneity of human fallopian tubes in regular and hydrosalpinx illness States recognized by scRNA-seq. (2021). https://doi.org/10.1101/2021.09.16.460628
Yang, S., Wang, X., Gao, H. & Yuan, S. Motile cilia: key developmental and practical roles in reproductive techniques. Andrology (2025).
Gervasi, M. G. et al. Sperm launch from the oviductal epithelium is determined by Ca(2+) inflow upon activation of CB1 and TRPV1 by Anandamide. J. Cell. Biochem. 117, 320–333. (2016).
Maillo, V. et al. Oviductal response to gametes and early embryos in mammals. Reproduction 152, R127–141. (2016).
Bastos, N. M., Ferst, J. G. & Goulart, R. S. Coelho Da Silveira, J. The function of the oviduct and extracellular vesicles throughout early embryo growth in bovine. Anim. Reprod. 19, e20220015. (2022).
Owhor, L. E., Reese, S. & Kölle, S. Salpingitis impairs bovine tubal perform and Sperm-Oviduct interplay. Sci. Rep. 9, 10893. (2019).
Westrom, L., Mardh, P. A., Mecklenburg, C. V. & Hakansson, C. H. Studies on ciliated epithelia of the human genital tract. II. The mucociliary wave sample of fallopian tube epithelium. Fertil. Steril. 28, 955–961. (1977).
Mahmood, T., Smutna, S. E., Habib, S. & Djahanbakhch, A. M. The impact of ovarian steroids on epithelial ciliary beat frequency within the human fallopian tube. Hum. Reprod. 13, 2991–2994 (1998).
Lyons, R. A. et al. Fallopian tube ciliary beat frequency in relation to the stage of menstrual cycle and anatomical web site. Hum. Reprod. 17 (2002).
Lyons, R. A., Saridogan, E. & Djahanbakhch, O. The impact of ovarian follicular fluid and peritoneal fluid on fallopian tube ciliary beat frequency. Hum. Reprod. 21, 52–56. (2006).
Xia, W. et al. Effects of pelvic endometriosis and adenomyosis on ciliary beat frequency and muscular contractions within the human fallopian tube. Reprod. Biol. Endocrinol. 16. (2018).
Li, C. et al. TRPV4 is concerned in levonorgestrel-induced discount in oviduct ciliary beating. J. Pathol. 248, 77–87. (2019).
Shi, D., Komatsu, Ok., Uemura, T. & Fujimori, T. Analysis of ciliary beat frequency and ovum transport capability within the mouse oviduct. Genes Cells. 16, 282–290. (2011).
Bylander, A., Wellander, N. M., Goksör, R., Billig, M. & Larsson, H. DG. Rapid results of progesterone on ciliary beat frequency within the mouse fallopian tube. Reprod. Biol. Endocrinol. (2010).
Noreikat, Ok., Wolff, M., Kummer, W. & Kolle, S. Ciliary exercise within the oviduct of biking, pregnant, and muscarinic receptor knockout mice. Biol. Reprod. 86, 120. (2012).
Wessel, T., Schuchter, U. & Walt, H. Ciliary motility in bovine oviducts for sensing fast non-genomic reactions upon publicity to progesterone. Horm. Metab. Res. 36, 136–141. (2004).
Camara Pirez, M., Steele, H., Reese, S. & Kolle, S. Bovine sperm-oviduct interactions are characterised by particular sperm behaviour, ultrastructure and tubal reactions that are impacted by intercourse sorting. Sci. Rep. 10, 16522. (2020).
Scully, D. M. et al. Cystic ovary illness impairs transport velocity, clean muscle contraction, and epithelial ion transport within the bovine oviduct. Mol. Reprod. Dev. 88, 558–570. (2021).
Zhao, W. et al. Levonorgestrel decreases cilia beat frequency of human fallopian tubes and rat oviducts with out altering morphological construction. Clin. Exp. Pharmacol. Physiol. 42, 171–178. (2015).
Nakahari, T. et al. The regulation of ciliary beat frequency by ovarian steroids within the Guinea pig. Biomed. Res. 32 (2011).
Di Carlantonio, G., Shaoulian, R., Knoll, M., Magers, T. & Talbot, P. Analysis of ciliary beat frequencies in hamster oviducal explants. J. Exp. Zool. 272, 142–152. (1995).
Sataric, M. V., Nemes, T., Sataric, B., Sekulic, D. & Zdravkovic, S. Calcium ions tune the beats of cilia and flagella. Biosystems 196, 104172. (2020).
Raidt, J. et al. Ciliary perform and motor protein composition of human fallopian tubes. Hum. Reprod. 30, 2871–2880. (2015).
Wånggren, Ok., Stavreus-Evers, A., Olsson, C., Andersson, E. & Gemzell-Danielsson, Ok. Regulation of muscular contractions within the human fallopian tube by prostaglandins and progestagens. Hum. Reprod. 23, 2359–2368. (2008).
Li, S. et al. Estrogen receptor α is required for oviductal transport of embryos. Faseb j. 31, 1595–1607. (2017).
Papathanasiou, A., Djahanbakhch, O., Saridogan, E. & Lyons, R. A. The impact of interleukin-6 on ciliary beat frequency within the human fallopian tube. Fertil. Steril. 90, 391–394. (2008).
Saridogan, E. D. et al. G. Angiotensin II receptors and angiotensin II stimulation of ciliary exercise in human fallopian tube. Clinical Endocrinol. Metabolism 81 (1996).
Zhu, J. et al. Human fallopian tube epithelium co-culture with murine ovarian follicles reveals crosstalk within the reproductive cycle. Mol. Hum. Reprod. 22, 756–767. (2016).
Hunter, M. I., Thies, Ok. M. & Winuthayanon, W. Hormonal regulation of cilia within the feminine reproductive tract. Curr. Opin. Endocr. Metab. Res. 34 (2024).
Jackson-Bey, T. et al. Exposure of human fallopian tube epithelium to elevated testosterone leads to alteration of cilia gene expression and beating. Hum. Reprod. 35, 2086–2096. (2020).
Lippes, J., Krasner, J., Alfonso, L. A., Dacalos, E. D. & Lucero, R. Human oviductal fluid proteins. Fertil. Steril. 36, 623–629. (1981).
Andrade, Y. N. et al. TRPV4 channel is concerned within the coupling of fluid viscosity modifications to epithelial ciliary exercise. J. Cell. Biol. 168, 869–874. (2005).
Brodowska, A. et al. Estrogen and progesterone receptor Immunoexpression in fallopian tubes amongst postmenopausal girls based mostly on time for the reason that final menstrual interval. Int. J. Environ. Res. Public. Health. 18 (2021).
Tao, T. et al. Loss of tubal ciliated cells as a danger for ovarian or pelvic serous carcinoma. Am. J. Cancer Res. 10, 3815–3827 (2020).
Knoll, M., Shaoulian, R., Magers, T. & Talbot, P. Ciliary beat frequency of hamster oviducts is decreased in vitro by publicity to options of mainstream and sidestream cigarette smoke. Biol. Reprod. 53, 29–37. (1995).
Knoll, M. & Talbot, P. Cigarette smoke inhibits oocyte cumulus complicated pick-up by the oviduct in vitro unbiased of ciliary beat frequency. Reprod. Toxicol. 12, 57–68. (1998).
Riveles, Ok., Tran, V., Roza, R., Kwan, D. & Talbot, P. Smoke from conventional industrial, hurt discount and analysis model cigarettes impairs oviductal functioning in hamsters (Mesocricetus auratus) in vitro. Hum. Reprod. 22, 346–355. (2007).
Duran, M. et al. Does vitamin E stop tubal harm brought on by smoking? A lightweight microscopy and animal research. Eur. J. Obstet. Gynecol. Reprod. Biol. 175, 149–151. (2014).
Silvestris, E., de Pergola, G., Rosania, R. & Loverro, G. Obesity as disruptor of the feminine fertility. Reprod. Biol. Endocrinol. 16 (2018).
Bellver, J. et al. Female weight problems impairs in vitro fertilization final result with out affecting embryo high quality. Fertil. Steril. 93, 447–454. (2010).
Wise, L. A. et al. An internet-based potential research of physique dimension and time-to-pregnancy. Hum. Reprod. 25, 253–264. (2010).
Liu, H., Kiseleva, A. A. & Golemis, E. A. Ciliary signalling in most cancers. Nat. Rev. Cancer. 18, 511–524. (2018).
Plotnikova, O. V., Golemis, E. A. & Pugacheva, E. N. Cell cycle-dependent ciliogenesis and most cancers. Cancer Res. 68, 2058–2061. (2008).
Pugacheva, E. N., Jablonski, S. A., Hartman, T. R., Henske, E. P. & Golemis, E. A. HEF1-dependent Aurora A activation induces disassembly of the first cilium. Cell 129, 1351–1363. (2007).
Seeley, E. S., Carrière, C., Goetze, T., Longnecker, D. S. & Korc, M. Pancreatic most cancers and precursor pancreatic intraepithelial neoplasia lesions are devoid of major cilia. Cancer Res. 69, 422–430. (2009).
Yi, M. et al. Epidemiological traits of ladies’s cancers from 1990 to 2019 on the international, regional, and National ranges: a population-based research. Biomark. Res. 9, 55. (2021).
Kong, Y., Zong, L., Yang, J., Wu, M. & Xiang, Y. Cervical most cancers in girls aged 25 years or youthful: a retrospective research. Cancer Manag Res. 11, 2051–2058. (2019).
Willows, Ok., Lennox, G. & Covens, A. Fertility-sparing administration in cervical most cancers: balancing oncologic outcomes with reproductive success. Gynecol. Oncol. Res. Pract. 3 (2016).
Harrison, R. F. et al. National patterns of care and fertility outcomes for reproductive-aged girls with endometrial most cancers or atypical hyperplasia. Am. J. Obstet. Gynecol. 221 (2019). 474.e471-474.e411.
Tamauchi, S. et al. Reduced response to managed ovarian stimulation after radical trachelectomy: A pitfall of fertility-sparing surgical procedure for cervical most cancers. Int. J. Gynaecol. Obstet. 154, 162–168. (2021).
Sung, H. et al. Global most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Cancer J. Clin. 71, 209–249. (2021).
Kehm, R. D., Yang, W., Tehranifar, P. & Terry, M. B. 40 years of change in Age- and Stage-Specific most cancers incidence charges in US ladies and men. JNCI Cancer Spectr. 3, pkz038. (2019).
Scott, O. W., Tin, T., Bigby, S., Elwood, J. M. & S. M. & Rapid improve in endometrial most cancers incidence and ethnic variations in new Zealand. Cancer Causes Control. 30, 121–127. (2019).
Ward, E. M. et al. Annual report back to the nation on the standing of most cancers, that includes most cancers in women and men age 20–49 Years. J Natl Cancer Inst 111, 1279–1297. (2019).
Wang, S., Burton, J. C., Behringer, R. R. & Larina, I. V. In vivo micro-scale tomography of ciliary conduct within the mammalian oviduct. Sci. Rep. 5, 13216. (2015).
Chen, J. J., Lemieux, B. T. & Wong, B. J. A Low-Cost methodology of ciliary beat frequency measurement utilizing iPhone and MATLAB: rabbit research. Otolaryngol. Head Neck Surg. 155, 252–256. (2016).
He, Y., Qu, Y., Jing, J. C. & Chen, Z. Characterization of oviduct ciliary beat frequency utilizing actual time part resolved doppler spectrally encoded interferometric microscopy. Biomed. Opt. Express. 10, 5650–5659. (2019).
Harlow, S. D. et al. Executive abstract of the levels of reproductive getting older Workshop + 10: addressing the unfinished agenda of staging reproductive getting older. Menopause 19, 387–395. (2012).
Grub, J., Süss, H., Willi, J. & Ehlert, U. Steroid hormone secretion over the course of the perimenopause: findings from the Swiss perimenopause research. Front. Glob Womens Health. 2, 774308. (2021).
Gordon, J. L., Eisenlohr-Moul, T. A., Rubinow, D. R., Schrubbe, L. & Girdler, S. S. Naturally occurring modifications in estradiol concentrations within the menopause transition predict morning cortisol and unfavourable temper in perimenopausal despair. Clin. Psychol. Sci. 4, 919–935. (2016).
Warren, Ok. J. et al. Exercise improves host response to influenza viral an infection in overweight and Non-Obese mice by completely different mechanisms. PLoS One. 10, e0129713. (2015).
Kumar, R. et al. Association of leptin with weight problems and insulin resistance. Cureus 12, e12178. (2020).
Oses, C., Hernandez, M. P., Milovic, C., Llados, C. & Villalon, M. High ranges of leptin reduces ciliary exercise and impacts ovum transport velocity within the rat oviduct. Biol. Reprod. 85, 337–337. (2011).
Guo, Q., Li, Z., Jia, S., Tong, F. & Ma, L. Mechanism of human tubal ectopic being pregnant brought on by cigarette smoking. Reprod. Sci. 30, 1074–1081. (2023).
Horne, A. W. et al. The affiliation between smoking and ectopic being pregnant: why nicotine is BAD on your fallopian tube. PLoS One. 9, e89400. (2014).
Utiyama, D. M. et al. The results of smoking and smoking cessation on nasal mucociliary clearance, mucus properties and irritation. Clin. (Sao Paulo). 71, 344–350. (2016).
Schamberger, A. C., Staab-Weijnitz, C. A., Mise-Racek, N. & Eickelberg, O. Cigarette smoke alters major human bronchial epithelial cell differentiation on the air-liquid interface. Sci. Rep. 5, 8163. (2015).
Navarrette, C. R. et al. Particulate matter in cigarette smoke will increase ciliary axoneme beating by mechanical stimulation. J. Aerosol Med. Pulm Drug Deliv. 25, 159–168. (2012).
Hahn, H. L., Kleinschrot, D. & Hansen, D. Nicotine will increase ciliary beat frequency by a direct impact on respiratory cilia. Clin. Investig. 70, 244–251. (1992).
Perniss, A. et al. Acute nicotine administration stimulates ciliary exercise through α3β4 nAChR within the mouse trachea. Int. Immunopharmacol. 84, 106496. (2020).
B Brown, R. SARS-CoV-2 and smoker’s paradox: mediation by ciliary beat frequency and mucociliary clearance? BioMed 2, 88–93 (2022).
Xu, T. et al. Ethanol impedes embryo transport and impairs oviduct epithelium. Toxicology 357–358, 44–51. (2016).
Kim, J. J., Kurita, T. & Bulun, S. E. Progesterone motion in endometrial most cancers, Endometriosis, uterine Fibroids, and breast most cancers. Endocr. Rev. 34, 130–162. (2013).
Ishikawa, H. et al. Progesterone is crucial for upkeep and development of uterine leiomyoma. Endocrinology 151, 2433–2442. (2010).
Lopes, R. G. et al. Analysis of estrogen- and progesterone-receptor expression in endometrial polyps. J. Minim. Invasive Gynecol. 14, 300–303. (2007).
Labidi-Galy, S. I. et al. High grade serous ovarian carcinomas originate within the fallopian tube. Nat. Commun. 8, 1093. (2017).
Gilks, C. B. et al. Incidental nonuterine high-grade serous carcinomas come up within the fallopian tube normally: additional proof for the tubal origin of high-grade serous carcinomas. Am. J. Surg. Pathol. 39, 357–364. (2015).
Tănase, A. E. et al. High-grade serous ovarian most cancers (HGSOC) with fallopian tube involvement. Rom J. Morphol. Embryol. 65, 325–329. (2024).
Nilsson, O., Englund, D., Weiner, E. & Victor, A. Endometrial results of levonorgestrel and estradiol: A scanning electron microscopic research of the luminal epithelium. Contraception 22, 71–83. (1980).
Cai, C., Peng, X., Zhang, Y. & Serum IL-6 stage predicts the prognosis and analysis in cervical most cancers sufferers. Int. J. Womens Health. 14, 655–663. (2022).
Che, Q. et al. Interleukin 6 promotes endometrial most cancers development by an autocrine suggestions loop involving ERK-NF-κB signaling pathway. Biochem. Biophys. Res. Commun. 446, 167–172. (2014).
Bellone, S. et al. High serum ranges of interleukin-6 in endometrial carcinoma are related to uterine serous papillary histology, a extremely aggressive and chemotherapy-resistant variant of endometrial most cancers. Gynecol. Oncol. 98, 92–98. (2005).
Waqar, S., Khan, S. A., Sarfraz, T. & Waqar, S. Expression of Estrogen receptors (ER), progesterone receptors (PR) and HER-2/neu receptors in endometrial carcinoma and their associations with histological sorts, grades and levels of the tumor. Pak J. Med. Sci. 34, 266–271. (2018).
Kaur, J., Suri, A., & Kaur, M. A. Clinicopathological Study Expression of ER, PR and HER/2neu in endometrial carcinoma. Obstet. Gynecol. Res. 05. (2022).
Bahar-Shany, Ok. et al. Exposure of fallopian tube epithelium to follicular fluid mimics carcinogenic modifications in precursor lesions of serous papillary carcinoma. Gynecol. Oncol. 132, 322–327. (2014).
Casey, L. & Singh, N. Metastases to the ovary arising from endometrial, cervical and fallopian tube most cancers: current advances. Histopathology 76, 37–51. (2020).
Njoku, Ok., Ramchander, N. C., Wan, Y. L., Barr, C. E. & Crosbie, E. J. Pre-treatment inflammatory parameters predict survival from endometrial most cancers: A potential database evaluation. Gynecol. Oncol. 164, 146–153. (2022).
Li, M., Li, M., Wei, Y. & Xu, H. Prognostic and medical significance of Cyclooxygenase-2 overexpression in endometrial most cancers: A Meta-Analysis. Front. Oncol. 10, 1202. (2020).
Zhu, J. et al. Prostaglandin receptor EP3 regulates cell proliferation and migration with affect on survival of endometrial most cancers sufferers. Oncotarget 9, 982–994. (2018).
Catalano, R. D. et al. Hypoxia and prostaglandin E receptor 4 signalling pathways synergise to advertise endometrial adenocarcinoma cell proliferation and tumour development. PLoS One. 6, e19209. (2011).
Ke, J. et al. Prostaglandin E2 (PGE2) promotes proliferation and invasion by enhancing SUMO-1 exercise through EP4 receptor in endometrial most cancers. Tumour Biol. 37, 12203–12211. (2016).
Verdugo, P., Rumery, R. E. & Tam, P. Y. Hormonal management of oviductal ciliary exercise: impact of prostaglandins. Fertil. Steril. 33, 193–196. (1980).
Passarello, Ok., Kurian, S., Villanueva, V. E. & Cancer An overview of Pathophysiology, Management, and care. Semin Oncol. Nurs. 35, 157–165. (2019).
Li, N. et al. Estrogen Receptor- and progesterone Receptor-Positive thresholds in predicting the recurrence of early Low-Risk endometrial most cancers. Clin. Med. Insights: Oncol. 16, 11795549221103200. (2022).
Nishimura, A. et al. Ciliary beat frequency managed by oestradiol and progesterone throughout ovarian cycle in guinea-pig fallopian tube. Exp. Physiol. 95, 819–828. (2010).
This web page was created programmatically, to learn the article in its unique location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41598-025-24285-0
and if you wish to take away this text from our web site please contact us
