This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41561-025-01853-7
and if you wish to take away this text from our web site please contact us
Monnin, E. et al. Atmospheric CO2 concentrations during the last glacial termination. Science 291, 112–114 (2001).
Anderson, R. F. et al. Wind-driven upwelling within the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, 1443–1448 (2009).
Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 focus. Nature 466, 47–55 (2010).
Sikes, E. L. et al. Southern Ocean glacial situations and their affect on deglacial occasions. Nat. Rev. Earth Environ. 4, 454–470 (2023).
Marshall, J. & Speer, Okay. Closure of the meridional overturning circulation via Southern Ocean upwelling. Nat. Geosci. 5, 171–180 (2012).
Barker, S. et al. Extreme deepening of the Atlantic overturning circulation throughout deglaciation. Nat. Geosci. 3, 567–571 (2010).
Burke, A. & Robinson, L. F. The Southern Ocean’s function in carbon alternate over the last deglaciation. Science 335, 557–561 (2012).
Chen, T. et al. Synchronous centennial abrupt occasions within the ocean and environment over the last deglaciation. Science 349, 1537–1541 (2015).
Ronge, T. A. et al. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool. Nat. Commun. 7, 11487 (2016).
Skinner, L. C. et al. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328, 1147–1151 (2010).
Ronge, T. A. et al. Radiocarbon proof for the contribution of the southern Indian Ocean to the evolution of atmospheric CO2 during the last 32,000 years. Paleoceanogr. Paleoclimatol. 35, e2019PA003733 (2020).
Solodoch, A. et al. How does Antarctic Bottom Water cross the Southern Ocean?. Geophys. Res. Lett. 49, e2021GL097211 (2022).
Curry, W. B. & Oppo, D. W. Glacial water mass geometry and the distribution of δ13C of ΣCO2 within the western Atlantic Ocean. Paleoceanography 20, PA1017 (2005).
Pöppelmeier, F. et al. Multi-proxy constraints on Atlantic circulation dynamics for the reason that final ice age. Nat. Geosci. 16, 349–356 (2023).
Adkins, J. F. The function of deep ocean circulation in setting glacial climates. Paleoceanography 28, 539–561 (2013).
Ferrari, R. et al. Antarctic sea ice management on ocean circulation in current and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).
Lynch-Stieglitz, J. et al. Atlantic meridional overturning circulation throughout the Last Glacial Maximum. Science 316, 66–69 (2007).
Huang, H. et al. No detectable Weddell Sea Antarctic Bottom Water export over the last and penultimate glacial most. Nat. Commun. 11, 424 (2020).
Yu, J. et al. Last glacial atmospheric CO2 decline because of widespread Pacific deep-water enlargement. Nat. Geosci. 13, 628–633 (2020).
Böhm, E. et al. Strong and deep Atlantic Meridional Overturning Circulation over the last glacial cycle. Nature 517, 73–76 (2015).
Piotrowski, A. M. et al. Intensification and variability of ocean thermohaline circulation via the final deglaciation. Earth Planet. Sci. Lett. 225, 205–220 (2004).
Frank, M. Radiogenic isotopes: tracers of previous ocean circulation and erosional enter. Rev. Geophys. 40, 1001 (2002).
Du, J. et al. Abyssal seafloor as a key driver of ocean trace-metal biogeochemical cycles. Nature 642, 620–627 (2025).
Wang, R. et al. Boundary processes and neodymium biking alongside the Pacific margin of West Antarctica. Geochim. Cosmochim. Acta 327, 1–20 (2022).
Grenier, M. et al. Differentiating lithogenic provides, water mass transport, and organic processes on and Off the Kerguelen Plateau utilizing uncommon earth factor concentrations and neodymium isotopic compositions. Front. Mar. Sci. 5, 426 (2018).
Basak, C. et al. Breakup of final glacial deep stratification within the South Pacific. Science 359, 900–904 (2018).
Stichel, T. et al. The hafnium and neodymium isotope composition of seawater within the Atlantic sector of the Southern Ocean. Earth Planet. Sci. Lett. 317-318, 282–294 (2012).
Wu, Y. et al. Assessing neodymium isotopes as an ocean circulation tracer within the southwest Atlantic. Earth Planet. Sci. Lett. 599, 117846 (2022).
Wu, S. et al. Orbital- and millennial-scale Antarctic Circumpolar Current variability in Drake Passage over the previous 140,000 years. Nat. Commun. 12, 3948 (2021).
Williams, T. J. et al. Neodymium isotope proof for coupled Southern Ocean circulation and Antarctic local weather all through the final 118,000 years. Quat. Sci. Rev. 260, 106915 (2021).
Zhao, N. et al. Glacial–interglacial Nd isotope variability of North Atlantic Deep Water modulated by North American ice sheet. Nat. Commun. 10, 5773 (2019).
Du, J., Haley, B. A. & Mix, A. C. Evolution of the Global Overturning Circulation for the reason that Last Glacial Maximum based mostly on marine authigenic neodymium isotopes. Quat. Sci. Rev. 241, 106396 (2020).
Lund, D. C., Adkins, J. F. & Ferrari, R. Abyssal Atlantic circulation throughout the Last Glacial Maximum: constraining the ratio between transport and vertical mixing. Paleoceanography 26, PA1213 (2011).
Pöppelmeier, F. et al. Stable Atlantic Deep Water mass sourcing on glacial–interglacial timescales. Geophys. Res. Lett. 48, e2021GL092722 (2021).
Jaccard, S. L. et al. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 via the final ice age. Nature 530, 207–210 (2016).
Piotrowski, A. M. et al. Reconstructing deglacial North and South Atlantic deep water sourcing utilizing foraminiferal Nd isotopes. Earth Planet. Sci. Lett. 357-358, 289–297 (2012).
Skinner, L. C. et al. North Atlantic versus Southern Ocean contributions to a deglacial surge in deep ocean air flow. Geology 41, 667–670 (2013).
McManus, J. F. et al. Collapse and fast resumption of Atlantic meridional circulation linked to deglacial local weather modifications. Nature 428, 834–837 (2004).
Roberts, J. et al. Evolution of South Atlantic density and chemical stratification throughout the final deglaciation. Proc. Natl Acad. Sci. USA 113, 514–519 (2016).
Fudge, T. J. et al. Onset of deglacial warming in West Antarctica pushed by native orbital forcing. Nature 500, 440–444 (2013).
Fischer, H. et al. Reconstruction of millennial modifications in mud emission, transport and regional sea ice protection utilizing the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica. Earth Planet. Sci. Lett. 260, 340–354 (2007).
van Wijk, E. M. & Rintoul, S. R. Freshening drives contraction of Antarctic Bottom Water within the Australian Antarctic Basin. Geophys. Res. Lett. 41, 1657–1664 (2014).
Gunn, Okay. L. et al. Recent lowered abyssal overturning and air flow within the Australian Antarctic Basin. Nat. Clim. Change 13, 537–544 (2023).
Smith, W. O. et al. The Ross Sea in a sea of change. Oceanography 25, 90–103 (2012).
Krueger, S. et al. North Atlantic Deep Water and Antarctic Bottom Water variability over the last 200 ka recorded in an abyssal sediment core off South Africa. Glob. Planet. Change 80-81, 180–189 (2012).
Yu, J. et al. Deep South Atlantic carbonate chemistry and elevated interocean deep water alternate throughout final deglaciation. Quat. Sci. Rev. 90, 80–89 (2014).
Zhang, H. et al. Indian Ocean sedimentary calcium carbonate distribution and its implications for the glacial deep ocean circulation. Quat. Sci. Rev. 284, 107490 (2022).
Jacobel, A. W. et al. Repeated storage of respired carbon within the equatorial Pacific Ocean during the last three glacial cycles. Nat. Commun. 8, 1727 (2017).
Rahlf, P. et al. Tracing water mass mixing and continental inputs within the southeastern Atlantic Ocean with dissolved neodymium isotopes. Earth Planet. Sci. Lett. 530, 115944 (2020).
Garcia-Solsona, E. et al. Rare earth parts and Nd isotopes tracing water mass mixing and particle-seawater interactions within the SE Atlantic. Geochim. Cosmochim. Acta 125, 351–372 (2014).
Barbante, C. et al. One-to-one coupling of glacial local weather variability in Greenland and Antarctica. Nature 444, 195–198 (2006).
Brook, E. J. et al. Timing of millennial-scale local weather change at Siple Dome, West Antarctica, over the last glacial interval. Quat. Sci. Rev. 24, 1333–1343 (2005).
Gutjahr, M. & Lippold, J. Early arrival of Southern Source Water within the deep North Atlantic previous to Heinrich occasion 2. Paleoceanography 26, PA2101 (2011).
Lippold, J. et al. Constraining the variability of the Atlantic Meridional Overturning Circulation throughout the Holocene. Geophys. Res. Lett. 46, 11338–11346 (2019).
Roberts, N. L. et al. Synchronous deglacial overturning and water mass supply modifications. Science 327, 75–78 (2010).
Bereiter, B. et al. Revision of the EPICA Dome C CO2 file from 800 to 600 kyr earlier than current. Geophys. Res. Lett. 42, 542–549 (2015).
Huang, H. et al. Efficient extraction of previous seawater Pb and Nd isotope signatures from Southern Ocean sediments. Geochem. Geophys. Geosyst. 22, e2020GC009287 (2021).
Jiang, F. et al. Asian mud enter within the western Philippine Sea: proof from radiogenic Sr and Nd isotopes. Geochem. Geophys. Geosyst. 14, 1538–1551 (2013).
Tachikawa, Okay., Piotrowski, A. M. & Bayon, G. Neodymium related to foraminiferal carbonate as a recorder of seawater isotopic signatures. Quat. Sci. Rev. 88, 1–13 (2014).
McLennan, S. M. in Geochemistry and Mineralogy of Rare Earth Elements (eds Lipin, B. R. & McKay, G. A.) 169–200 (De Gruyter, 1989).
Martin, E. E. et al. Extraction of Nd isotopes from bulk deep sea sediments for paleoceanographic research on Cenozoic time scales. Chem. Geol. 269, 414–431 (2010).
Pin, C. & Zalduegui, J. S. Sequential separation of sunshine rare-earth parts, thorium and uranium by miniaturized extraction chromatography: utility to isotopic analyses of silicate rocks. Anal. Chim. Acta 339, 79–89 (1997).
Vance, D. & Thirlwall, M. An evaluation of mass discrimination in MC-ICPMS utilizing Nd isotopes. Chem. Geol. 185, 227–240 (2002).
Tanaka, T. et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281 (2000).
Li, J. et al. Production and certification of the reference materials GSB 04-3258-2015 as a 143Nd/144Nd isotope ratio reference. Geostand. Geoanal. Res. 41, 255–262 (2017).
Frank, M. et al. Late Quaternary sediment relationship and quantification of lateral sediment redistribution making use of 230Thex: a examine from the jap Atlantic sector of the Southern Ocean. Geol. Rundsch. 85, 554–566 (1996).
Kemp, A. E. S. et al. Migration of the Antarctic Polar Front via the mid-Pleistocene transition: proof and climatic implications. Quat. Sci. Rev. 29, 1993–2009 (2010).
Gottschalk, J. et al. Radiocarbon measurements of small-size foraminiferal samples with the Mini Carbon Dating System (MICADAS) on the University of Bern: implications for paleoclimate reconstructions. Radiocarbon 60, 469–491 (2018).
Heaton, T. J. et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).
Müller, S. A. et al. Water mass distribution and air flow time scales in a cost-efficient, three-dimensional ocean mannequin. J. Clim. 19, 5479–5499 (2006).
Robinson, S. et al. Global continental and marine detrital εNd: an up to date compilation to be used in understanding marine Nd biking. Chem. Geol. 567, 120119 (2021).
Pöppelmeier, F. et al. Neodymium isotopes as a paleo-water mass tracer: a model-data reassessment. Quat. Sci. Rev. 279, 107404 (2022).
Pöppelmeier, F. et al. Influence of elevated Nd fluxes on the northern Nd isotope finish member of the Atlantic throughout the early Holocene. Paleoceanogr. Paleoclimatol. 35, e2020PA003973 (2020).
Howe, J. N. W. et al. North Atlantic Deep Water manufacturing throughout the Last Glacial Maximum. Nat. Commun. 7, 11765 (2016).
Du, J. et al. Flushing of the deep Pacific Ocean and the deglacial rise of atmospheric CO2 concentrations. Nat. Geosci. 11, 749–755 (2018).
Robinson, L. F. & van de Flierdt, T. Southern Ocean proof for lowered export of North Atlantic Deep Water throughout Heinrich Event 1. Geology 37, 195–198 (2009).
Struve, T. et al. Middle Holocene enlargement of Pacific Deep Water into the Southern Ocean. Proc. Natl Acad. Sci. USA 117, 889–894 (2020).
Wilson, D. J. et al. Sea-ice management on deglacial decrease cell circulation modifications recorded by Drake Passage deep-sea corals. Earth Planet. Sci. Lett. 544, 116405 (2020).
Lamy, F. et al. Five million years of Antarctic Circumpolar Current power variability. Nature 627, 789–796 (2024).
Rae, J. W. B. et al. CO2 storage and launch within the deep Southern Ocean on millennial to centennial timescales. Nature 562, 569–573 (2018).
Abbott, A. N. et al. The sedimentary flux of dissolved uncommon earth parts to the ocean. Geochim. Cosmochim. Acta 154, 186–200 (2015).
Huang H. Nd isotope date from Southern Ocean seawater and sediments. Zenodo (2025).
Amakawa, H. et al. Neodymium focus and isotopic composition distributions within the southwestern Indian Ocean and the Indian sector of the Southern Ocean. Chem. Geol. 511, 190–203 (2019).
Osborne, A. H. et al. The potential of sedimentary foraminiferal uncommon earth factor patterns to hint water plenty up to now. Geochem. Geophys. Geosyst. 18, 1550–1568 (2017).
Crocket, Okay. C. et al. Rare earth factor distribution within the NE Atlantic: proof for benthic sources, longevity of the seawater sign, and biogeochemical biking. Front. Mar. Sci. 5, 147 (2018).
Hathorne, E. C. et al. Rare earth factor distribution within the Atlantic sector of the Southern Ocean: the steadiness between particle scavenging and vertical provide. Mar. Chem. 177, 157–171 (2015).
Zheng, X.-Y. et al. Rare earth parts (REEs) within the tropical South Atlantic and quantitative deconvolution of their non-conservative habits. Geochim. Cosmochim. Acta 177, 217–237 (2016).
Du, J., Haley, B. A. & Mix, A. C. Neodymium isotopes in authigenic phases, backside waters and detrital sediments within the Gulf of Alaska and their implications for paleo-circulation reconstruction. Geochim. Cosmochim. Acta 193, 14–35 (2016).
Bau, M. et al. Discriminating between completely different genetic sorts of marine ferro-manganese crusts and nodules based mostly on uncommon earth parts and yttrium. Chem. Geol. 381, 1–9 (2014).
Gale, A. et al. The imply composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013).
Wedepohl, Okay. H., Heinrichs, H. & Bridgwater, D. Chemical traits and genesis of the quartz-feldspathic rocks within the Archean crust of Greenland. Contrib. Mineral. Petrol. 107, 163–179 (1991).
Shaw, D. et al. Composition of the Canadian Precambrian defend and the continental crust of the Earth. Geol. Soc. Lond. Spec. Publ. 24, 275–282 (1986).
Blaser, P. et al. Labrador Sea backside water provenance and REE alternate throughout the previous 35,000 years. Earth Planet. Sci. Lett. 542, 116299 (2020).
This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41561-025-01853-7
and if you wish to take away this text from our web site please contact us

