This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41561-025-01838-6
and if you wish to take away this text from our web site please contact us
Joyce, G. F. RNA evolution and the origins of life. Nature 338, 217–224 (1989).
Dworkin, J. P., Lazcano, A. & Miller, S. L. The roads to and from the RNA world. J. Theor. Biol. 222, 127–134 (2003).
Orgel, L. E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 39, 99–123 (2004).
Chandel, N. S. Glycolysis. Cold Spring Harbor Perspect. Biol. 13, a040535 (2021).
Hollis, J. M., Lovas, F. J. & Jewell, P. R. Interstellar glycolaldehyde: the primary sugar. Astrophys. J. Lett. 540, L107 (2000).
Cooper, G. et al. Carbonaceous meteorites as a supply of sugar-related natural compounds for the early Earth. Nature 414, 879–883 (2001).
Furukawa, Y. et al. Extraterrestrial ribose and different sugars in primitive meteorites. Proc. Natl Acad. Sci. USA 116, 24440–24445 (2019).
Martins, Z. et al. Extraterrestrial nucleobases within the Murchison meteorite. Earth Planet. Sci. Lett. 270, 130–136 (2008).
Callahan, M. P. et al. Carbonaceous meteorites include a variety of extraterrestrial nucleobases. Proc. Natl Acad. Sci. USA 108, 13995–13998 (2011).
Glavin, D. P., Callahan, M. P., Dworkin, J. P. & Elsila, J. E. The results of father or mother physique processes on amino acids in carbonaceous chondrites. Meteorit. Planet. Sci. 45, 1948–1972 (2011).
Oba, Y. et al. Identifying the vast range of extraterrestrial purine and pyrimidine nucleobases in carbonaceous meteorites. Nat. Commun. 13, 2008 (2022).
Koga, T., Takano, Y., Oba, Y., Naraoka, H. & Ohkouchi, N. Abundant extraterrestrial purine nucleobases within the Murchison meteorite: implications for a unified mechanism for purine synthesis in carbonaceous chondrite father or mother our bodies. Geochim. Cosmochim. Acta 365, 253–265 (2024).
Waajen, A. C., Lima, C., Goodacre, R. & Cockell, C. S. Life on Earth can develop on extraterrestrial natural carbon. Sci. Rep. 14, 3691 (2024).
Lauretta, D. S. et al. Asteroid (101955) Bennu within the laboratory: properties of the pattern collected by OSIRIS-REx. Meteorit. Planet. Sci. 59, 2453–2486 (2024).
Righter, Okay. et al. Curation planning and services for asteroid Bennu samples returned by the OSIRIS-REx mission. Meteorit. Planet. Sci. 58, 572–590 (2023).
McCoy, T. J. et al. An evaporite sequence from historical brine recorded in Bennu samples. Nature 637, 1072–1077 (2025).
Glavin, D. P. et al. Abundant ammonia and nitrogen-rich soluble natural matter in samples from asteroid (101955) Bennu. Nat. Astron. 9, 199–210 (2025).
Larralde, R., Robertson, M. P. & Miller, S. L. Rates of decomposition of ribose and different sugars: implications for chemical evolution. Proc. Natl Acad. Sci. USA 92, 8158–8160 (1995).
Dworkin, J. P. & Miller, S. L. A kinetic estimate of the free aldehyde content material of aldoses. Carbohydr. Res. 329, 359–365 (2000).
Yi, R. et al. Erythrose and threose: carbonyl migrations, epimerizations, aldol, and oxidative fragmentation reactions underneath believable prebiotic situations. Chem. A Eur. J. 29, e202202816 (2023).
Cooper, G. & Rios, A. C. Enantiomer excesses of uncommon and customary sugar derivatives in carbonaceous meteorites. Proc. Natl Acad. Sci. USA 113, E3322–E3331 (2016).
Meinert, C. et al. Ribose and associated sugars from ultraviolet irradiation of interstellar ice analogs. Science 352, 208–212 (2016).
Vinogradoff, V. et al. Olivine-catalyzed glycolaldehyde and sugar synthesis underneath aqueous situations: utility to prebiotic chemistry. Earth Planet. Sci. Lett. 626, 118558 (2024).
Naraoka, H. et al. Soluble natural molecules in samples of the carbonaceous asteroid (162173) Ryugu. Science 379, eabn9033 (2023).
Parker, E. T. et al. Extraterrestrial amino acids and amines recognized in asteroid Ryugu samples returned by the Hayabusa2 mission. Geochim. Cosmochim. Acta 347, 42–57 (2023).
Yoshimura, T. et al. Chemical evolution of primordial salts and natural sulfur molecules within the asteroid 162173 Ryugu. Nat. Commun. 14, 5284 (2023).
Prince, B. S. et al. Natural liquid cells: nanoscale fluid inclusions in asteroid samples. Microsc. Microanal. 31, ozaf048.751 (2025).
Nuevo, M., Cooper, G. & Sandford, S. A. Deoxyribose and deoxysugar derivatives from photoprocessed astrophysical ice analogues and comparability to meteorites. Nat. Commun. 9, 10 (2018).
Zhang, C. et al. Ionizing radiation publicity on Arrokoth shapes a sugar world. Proc. Natl Acad. Sci. USA 121, e2320215121 (2024).
Abe, S., Yoda, I., Kobayashi, Okay. & Kebukawa, Y. Gamma-ray-induced synthesis of sugars in meteorite father or mother our bodies. ACS Earth Space Chem. 8, 1737–1744 (2024).
Milam, S. N. et al. Formaldehyde in comets C/1995 O1 (Hale-Bopp), C/2002 T7 (LINEAR), and C/2001 This autumn (NEAT): investigating the cometary origin of H2CO. Astrophys. J. 649, 1169–1177 (2006).
Jes, Okay. J. et al. Detection of the best sugar, glycolaldehyde, in a solar-type protostar with ALMA. Astrophys. J. Lett. 757, L4 (2012).
Aponte, J. C., Whitaker, D., Powner, M. W., Elsila, J. E. & Dworkin, J. P. Analyses of aliphatic aldehydes and ketones in carbonaceous chondrites. ACS Earth Space Chem. 3, 463–472 (2019).
Ono, C. et al. Abiotic ribose synthesis underneath aqueous environments with numerous chemical situations. Astrobiology 24, 489–497 (2024).
Kaplan, H. H. et al. Bright carbonate veins on asteroid (101955) Bennu: implications for aqueous alteration historical past. Science 370, eabc3557 (2020).
Shigemasa, Y., Fujitani, T., Sakazawa, C. & Matsuura, T. Formose reactions 3. Evaluation of varied components affecting formose response. Bull. Chem. Soc. Jpn 50, 1527–1531 (1977).
Kim, H.-J. et al. Synthesis of carbohydrates in mineral-guided prebiotic cycles. J. Am. Chem. Soc. 133, 9457–9468 (2011).
Robinson, W. E., Daines, E., van Duppen, P., de Jong, T. & Huck, W. T. S. Environmental situations drive self-organization of response pathways in a prebiotic response community. Nat. Chem. 14, 623–631 (2022).
Tambawala, H. & Weiss, A. H. Homogeneously catalyzed formaldehyde condensation to carbohydrates: II. instabilities and Cannizzaro results. J. Catal. 26, 388–400 (1972).
Sutton, S. M., Pulletikurti, S., Lin, H., Krishnamurthy, R. & Liotta, C. L. Abiotic aldol reactions of formaldehyde with ketoses and aldoses—implications for the prebiotic synthesis of sugars by the formose response. Preprint at SSRN (2024).
Koga, T. & Naraoka, H. Synthesis of amino acids from aldehydes and ammonia: implications for natural reactions in carbonaceous chondrite father or mother our bodies. ACS Earth Space Chem. 6, 1311–1320 (2022).
Kebukawa, Y., Chan, Q. H. S., Tachibana, S., Kobayashi, Okay. & Zolensky, M. E. One-pot synthesis of amino acid precursors with insoluble natural matter in planetesimals with aqueous exercise. Sci. Adv. 3, e1602093 (2017).
Vinogradoff, V. et al. Impact of phyllosilicates on amino acid formation underneath asteroidal situations. ACS Earth Space Chem. 4, 1398–1407 (2020).
Furukawa, Y., Iwasa, Y. & Chikaraishi, Y. Synthesis of 13C-enriched amino acids with 13C-depleted insoluble natural matter in a formose-type response within the early photo voltaic system. Sci. Adv. 7, eabd3575 (2021).
Hirakawa, Y., Okamura, H., Nagatsugi, F., Kakegawa, T. & Furukawa, Y. One-pot synthesis of non-canonical ribonucleosides and their precursors from aldehydes and ammonia underneath prebiotic Earth situations. Geochim. Cosmochim. Acta 389, 239–248 (2025).
Degens, E. T. & Bajor, M. Amino acids and sugars within the bruderheim and Murray meteorite. Naturwissenschaften 49, 605–606 (1962).
Kaplan, I. R., Degens, E. T. & Reuter, J. H. Organic compounds in stony meteorites. Geochim. Cosmochim. Acta 27, 805–834 (1963).
Oba, Y. et al. Uracil within the carbonaceous asteroid (162173) Ryugu. Nat. Commun. 14, 1292 (2023).
Takano, Y. et al. Primordial aqueous alteration recorded in water-soluble natural molecules from the carbonaceous asteroid (162173) Ryugu. Nat. Commun. 15, 5708 (2024).
Glavin, D. P. et al. The homogenization and sub-division of a big combination pattern from asteroid Bennu for coordinated analyses. In 56th Lunar and Planetary Science 1079 (Lunar and Planetary Institute, 2025).
Glavin, D. P. et al. Investigating the influence of X-ray computed tomography imaging on soluble natural matter within the Murchison meteorite: implications for Bennu pattern analyses. Meteorit. Planet. Sci. 59, 105–133 (2024).
This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41561-025-01838-6
and if you wish to take away this text from our web site please contact us

