Reinforcement studying with realized devices to sort out arduous quantum issues on actual {hardware}

This web page was created programmatically, to learn the article in its unique location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s42005-025-02475-6
and if you wish to take away this text from our web site please contact us


  • Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum laptop. SIAM Rev. 41, 303–332 (1999).


    Google Scholar
     

  • Grover, L. Okay. A quick quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM Symposium on Theory of Computing, 212–219 (1996).

  • Monz, T. et al. Realization of a scalable Shor algorithm. Science 351, 1068–1070 (2016).


    Google Scholar
     

  • Mandviwalla, A., Ohshiro, Okay. & Ji, B. Implementing Grover’s algorithm on the IBM quantum computer systems. In 2018 IEEE International Conference on Big Data (Big Data), 2531–2537 (IEEE, 2018).

  • Grimsley, H. R., Economou, S. E., Barnes, E. & Mayhall, N. J. An adaptive variational algorithm for precise molecular simulations on a quantum laptop. Nat. Commun. 10, 3007 (2019).


    Google Scholar
     

  • Tang, H. L. et al. qubit-adapt-vqe: an adaptive algorithm for developing hardware-efficient ansätze on a quantum processor. PRX Quantum 2, 020310 (2021).


    Google Scholar
     

  • Feniou, C. et al. Overlap-adapt-vqe: sensible quantum chemistry on quantum computer systems by way of overlap-guided compact ansätze. Commun. Phys. 6, 192 (2023).


    Google Scholar
     

  • Zhou, L., Wang, S.-T., Choi, S., Pichler, H. & Lukin, M. D. Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term gadgets. Phys. Rev. X 10, 021067 (2020).


    Google Scholar
     

  • Zhu, L. et al. Adaptive quantum approximate optimization algorithm for fixing combinatorial issues on a quantum laptop. Phys. Rev. Res. 4, 033029 (2022).


    Google Scholar
     

  • Cheng, L., Chen, Y.-Q., Zhang, S.-X. & Zhang, S. Quantum approximate optimization by way of learning-based adaptive optimization. Commun. Phys. 7, 83 (2024).


    Google Scholar
     

  • Kundu, A., Botelho, L. & Glos, A. Hamiltonian-oriented homotopy quantum approximate optimization algorithm. Phys. Rev. A 109, 022611 (2024).


    Google Scholar
     

  • Krenn, M., Landgraf, J., Foesel, T. & Marquardt, F. Artificial intelligence and machine studying for quantum applied sciences. Phys. Rev. A 107, 010101 (2023).


    Google Scholar
     

  • Bang, J., Ryu, J., Yoo, S., Pawłowski, M. & Lee, J. A method for quantum algorithm design assisted by machine studying. N. J. Phys. 16, 073017 (2014).


    Google Scholar
     

  • Ostaszewski, M., Trenkwalder, L. M., Masarczyk, W., Scerri, E. & Dunjko, V. Reinforcement studying for optimization of variational quantum circuit architectures. Adv. Neural Inf. Process. Syst. 34, 18182–18194 (2021).


    Google Scholar
     

  • Kundu, A. Reinforcement learning-assisted quantum structure seek for variational quantum algorithms. Preprint at (2024).

  • Mnih, V. et al. Playing Atari with deep reinforcement studying. Preprint at (2013).

  • Ye, E. & Chen, S. Y.-C. Quantum structure search by way of continuous reinforcement studying. Preprint at (2021).

  • Fösel, T., Niu, M. Y., Marquardt, F. & Li, L. Quantum circuit optimization with deep reinforcement studying. Preprint at (2021).

  • Patel, Y. J. et al. Curriculum reinforcement studying for quantum structure search underneath {hardware} errors. In The Twelfth International Conference on Learning Representations (2024).

  • Tang, W. et al. Alpharouter: Quantum circuit routing with reinforcement studying and tree search. In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), Vol. 1, 930–940 (IEEE, 2024).

  • Moflic, I. & Paler, A. Cost explosion for environment friendly reinforcement studying optimisation of quantum circuits. In 2023 IEEE International Conference on Rebooting Computing (ICRC), 1–5 (IEEE, 2023).

  • Patel, Y. J., Jerbi, S., Bäck, T. & Dunjko, V. Reinforcement studying assisted recursive QAOA. EPJ Quantum Technol. 11, 6 (2024).


    Google Scholar
     

  • Sadhu, A., Sarkar, A. & Kundu, A. A quantum info theoretic evaluation of reinforcement learning-assisted quantum structure search. Quantum Mach. Intell. 6, 49 (2024).


    Google Scholar
     

  • Altmann, P. et al. Challenges for reinforcement studying in quantum circuit design. In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), Vol. 1, 1600–1610 (IEEE, 2024).

  • Alur, R. et al. Syntax-guided Synthesis (IEEE, 2013).

  • Srivastava, S., Gulwani, S. & Foster, J. S. From program verification to program synthesis. In Proceedings of the thirty seventh Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 313–326 (2010).

  • Deng, H., Tao, R., Peng, Y. & Wu, X. A case for synthesis of recursive quantum unitary applications. Proc. ACM Program. Lang. 8, 1759–1788 (2024).


    Google Scholar
     

  • Sarra, L., Ellis, Okay. & Marquardt, F. Discovering quantum circuit parts with program synthesis. Mach. Learn.: Sci. Technol. 5, 025029 (2024).


    Google Scholar
     

  • Ellis, Okay. et al. Dreamcoder: rising generalizable, interpretable information with wake-sleep Bayesian program studying. Philos. Trans. R. Soc. A. (2020).

  • Dechter, E., Malmaud, J., Adams, R. P. & Tenenbaum, J. B. Bootstrap studying by way of modular idea discovery. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI ’13, 1302–1309 (AAAI Press, 2013).

  • Ruiz, F. J. R. et al. Quantum circuit optimization with alphatensor. Nat. Mach. Intell. 7, 374–385 (2025).

  • Trenkwalder, L. M., López-Incera, A., Nautrup, H. P., Flamini, F. & Briegel, H. J. Automated gadget discovery within the quantum area. Mach. Learn.: Sci. Technol. 4, 035043 (2023).


    Google Scholar
     

  • Wille, R. & Burgholzer, L. Mqt qmap: environment friendly quantum circuit mapping. In Proceedings of the 2023 International Symposium on Physical Design, 198–204 (2023).

  • Botea, A., Kishimoto, A. & Marinescu, R. On the complexity of quantum circuit compilation. In Proceedings of the International Symposium on Combinatorial Search, Vol. 9, 138–142 (2018).

  • Kundu, A., Sarkar, A. & Sadhu, A. KANQAS: Kolmogorov-Arnold community for quantum structure search. EPJ Quantum Technol. 11, 76 (2024).


    Google Scholar
     

  • Pierce, B. C.Types and Programming Languages (MIT Press, 2002).

  • Bravyi, S. & Hastings, M. On complexity of the quantum Ising mannequin. Commun. Math. Phys. 349, 1–45 (2017).


    Google Scholar
     

  • Sumeet, Hörmann, M. & Schmidt, Okay. Hybrid quantum-classical algorithm for the transverse-field Ising mannequin within the thermodynamic restrict. Phys. Rev. B 110, 155128 (2024).


    Google Scholar
     

  • Curro, N., Danesh, Okay. & Singh, R. R. Quantum criticality within the infinite-range transverse area Ising mannequin. Phys. Rev. B 110, 075112 (2024).


    Google Scholar
     

  • Pfeuty, P. The one-dimensional Ising mannequin with a transverse area. ANNALS Phys. 57, 79–90 (1970).


    Google Scholar
     

  • Sünkel, L. et al. Quantum circuit building and optimization by means of hybrid evolutionary algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference, 934–942 (2025).

  • Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. nature 549, 242–246 (2017).


    Google Scholar
     

  • Camps, D. et al. An algebraic quantum circuit compression algorithm for Hamiltonian simulation. SIAM J. Matrix Anal. Appl. 43, 1084–1108 (2022).


    Google Scholar
     

  • Niu, S. & Todri-Sanial, A. How parallel circuit execution may be helpful for NISQ computing? In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), 1065–1070 (IEEE, 2022).

  • Zhu, M. et al. ECMAS: Efficient circuit mapping and scheduling for floor code. In 2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), 158–169 (IEEE, 2024).

  • Zen, R. et al. Quantum circuit discovery for fault-tolerant logical state preparation with reinforcement studying. Phys. Rev. X 15, 041012 (2025).


    Google Scholar
     

  • McCaskey, A. J. et al. Quantum chemistry as a benchmark for near-term quantum computer systems. NPJ Quantum Inf. 5, 99 (2019).


    Google Scholar
     

  • de Gracia Triviño, J. A., Delcey, M. G. & Wendin, G. Complete energetic area strategies for NISQ gadgets: the significance of canonical orbital optimization for accuracy and noise resilience. J. Chem. Theory Comput. 19, 2863–2872 (2023).


    Google Scholar
     

  • Giovagnoli, A., Tresp, V., Ma, Y. & Schubert, M. Qneat: Natural evolution of variational quantum circuit structure. In Proceedings of the Companion Conference on Genetic and Evolutionary Computation, 647–650 (2023).

  • This web page was created programmatically, to learn the article in its unique location you possibly can go to the hyperlink bellow:
    https://www.nature.com/articles/s42005-025-02475-6
    and if you wish to take away this text from our web site please contact us