This web page was created programmatically, to learn the article in its unique location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41598-025-33991-8
and if you wish to take away this text from our website please contact us
Şalvarlı, Ş. İ. & Griffiths, M. D. The affiliation between web gaming dysfunction and impulsivity: a scientific evaluation of literature. Int. J. Ment Health Addict. 20, 92–118 (2022).
Stavropoulos, V. et al. Associations between consideration deficit hyperactivity and web gaming dysfunction signs: is there consistency throughout varieties of signs, gender and international locations? Addict. Behav. Rep. 9, 100158 (2019).
Stavropoulos, V. et al. Deep studying(s) in gaming dysfunction by the person–avatar bond: a longitudinal examine utilizing machine studying. J. Behav. Addict. 12, 878–894 (2023).
World Health Organization. ICD-11: International Classification of Diseases: Eleventh Revision (World Health Organization, 2019).
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders fifth edn (American Psychiatric Publishing, 2013).
Schivinski, B., Brzozowska-Woś, M., Buchanan, E. M., Griffiths, M. D. & Pontes, H. M. Psychometric evaluation of the web gaming dysfunction diagnostic standards: an merchandise response principle examine. Addict. Behav. Rep. 8, 176–184 (2018).
Stavropoulos, V., Kuss, D. J., Griffiths, M. D., Wilson, P. & Motti-Stefanidi, F. MMORPG gaming and hostility predict web dependancy signs in adolescents: an empirical multilevel longitudinal examine. Addict. Behav. 64, 294–300 (2017).
van Rooij, A. J. et al. A weak scientific foundation for gaming dysfunction: let Us err on the facet of warning. J. Behav. Addict. 7, 1–9 (2018).
Burleigh, T. L. et al. Co-occurrence of gaming dysfunction and different doubtlessly addictive behaviours between Australia, new Zealand, and the united Kingdom. Int. J. Environ. Res. Public. Health. 19, 16078 (2022).
Stavropoulos, V., Motti-Stefanidi, F. & Griffiths, M. D. Risks and alternatives for youth within the digital period. Eur. Psychol. (2021).
Adams, B. W. et al. Internet gaming dysfunction behaviors in emergent maturity: a pilot examine analyzing the interaction between nervousness and household cohesion. Int. J. Ment Health Addict. 17, 828–844 (2019).
Stavropoulos, V., Gómez, R. & Motti-Stefanidi, F. Internet gaming dysfunction: a pathway in direction of evaluation consensus. Front. Psychol. 10, 1822 (2019).
Zarate, D., Ball, M., Montag, C., Prokofieva, M. & Stavropoulos, V. Unravelling the online of addictions: a community evaluation strategy. Addict. Behav. Rep. 15, 100406 (2022).
Griffiths, M. D. et al. Gaming dysfunction amongst kids and adolescents. In (eds Demetrovics, Z. & Griffiths, M. D.) Handbook of Children and Screens: Digital Media, Development, and Well-Being from Birth Through Adolescence 187–194 (Springer Nature, (2024).
Le Glaz, A. et al. Machine studying and pure Language processing in psychological well being: systematic evaluation. J. Med. Internet Res. 23, e15708 (2021).
Le, N. et al. Detection and characterization of on-line substance use discussions amongst avid gamers: qualitative retrospective evaluation of Reddit r/CeaseGaming knowledge. JMIR Infodemiol. 4, e58201 (2024).
Prochaska, J. O. & DiClemente, C. C. The transtheoretical mannequin of change. In Treating Addictive Behaviors (eds Prochaska, J. O. & DiClemente, C. C.) 3–27 (Plenum, (1997).
Attrey, L., Dua, S., Kaushik, R., Anand, S. & Agarwal, A. Modeling the transtheoretical mannequin for well being conduct stage evaluation: software improvement and testing. In Handbook of Deep Learning Models for Healthcare Data Processing 144–157 (CRC, 2026).
Kim, J., Lee, J., Park, E. & Han, J. A deep studying mannequin for detecting psychological sickness from person content material on social media. Sci. Rep. 10, 11846 (2020).
Zarate, D., Ball, M., Prokofieva, M., Kostakos, V. & Stavropoulos, V. Identifying self-disclosed nervousness on twitter: a pure Language processing strategy. Psychiatry Res. 330, 115579 (2023).
Kavvadias, S., Drosatos, G. & Kaldoudi, E. Supporting matter modeling and traits evaluation in biomedical literature. J. Biomed. Inf. 110, 103574 (2020).
Proferes, N., Jones, N., Gilbert, S., Fiesler, C. & Zimmer, M. Studying reddit: a scientific overview of disciplines, approaches, strategies, and ethics. Soc. Media Soc. 7, 20563051211019004 (2021).
Reddit Inc & Press (https://redditinc.com/press; accessed 10 July 2025).
Hwang, Y., Kim, H. J., Choi, H. J. & Lee, J. Exploring irregular conduct patterns of on-line customers with emotional consuming conduct: matter modeling examine. J. Med. Internet Res. 22, e15700 (2020).
Shen, J. H. & Rudzicz, F. Detecting nervousness by Reddit. In Proc. Fourth Workshop Comput. Linguist. Clin. Psychol.—From Linguist. Signal Clin. Reality 58–65 (2017).
Tadesse, M. M., Lin, H., Xu, B. & Yang, L. Detection of depression-related posts in Reddit social media discussion board. IEEE Access. 7, 44883–44893 (2019).
Bucur, A. M., Cosma, A. & Dinu, L. P. Early threat detection of pathological playing, self-harm and melancholy utilizing BERT. Preprint at (2021). https://arxiv.org/abs/2106.16175.
Westrupp, E. M. et al. Text mining of Reddit posts: utilizing latent dirichlet allocation to determine frequent parenting points. PLoS One. 17, e0277458 (2022).
Blei, D. M., Ng, A. Y. & Jordan, M. I. Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003).
Prochaska, J. O. & DiClemente, C. C. Toward a complete mannequin of change. In Treating Addictive Behaviors: Processes of Change (eds (eds Miller, W. R. & Heather, N.) 3–27 (Plenum, (1986).
Kozinets, R. V. Netnography: Redefined. Sage (2015).
Braun, V. & Clarke, V. Reflecting on reflexive thematic evaluation. Qual. Res. Sport Exerc. Health. 11, 589–597 (2019).
Van Holst, S. PRAW: the Python Reddit API Wrapper (Version 7.8.0). GitHub (2024). https://github.com/praw-dev/praw.
Wheeler, J. M., Cohen, A. S., Xiong, J., Lee, J. & Choi, H. J. Sample dimension for latent dirichlet allocation of constructed-response gadgets. In Quantitative Psychology: IMPS 2020 (eds Wiberg, M. et al.) vol. 353 287–302 (Springer, (2021).
Maleki, N., Padmanabhan, B. & Dutta, Okay. The impact of financial incentives on well being care social media content material: examine based mostly on matter modeling and sentiment evaluation. J. Med. Internet Res. 25, e44307 (2023).
Akef, I., Arango, J. S. M. & Xu, X. Mallet vs gensim: matter modeling for 20 information teams report. Univ. Ark. Little Rock. Law J. 2, 10–13140 (2016).
Laureate, C. D. P., Buntine, W. & Linger, H. A scientific evaluation of using matter fashions for brief textual content social media evaluation. Artif. Intell. Rev. 56, 14223–14255 (2023).
Řehůřek, R. & Sojka, P. Software framework for matter modelling with massive corpora. In Proc. LREC 2010 Workshop New Challenges Large-Scale Text Anal. 45–50ELRA, (2010).
Röder, M., Both, A. & Hinneburg, A. Exploring the house of matter coherence measures. In Proc. eighth ACM Int. Conf. Web Search Data Min. 399–408ACM, (2015).
Gao, S., Pandya, S., Agarwal, S. & Sedoc, J. Topic modeling for maternal well being utilizing Reddit. In Proc. twelfth Int. Workshop Health Text Mining Inf. Anal. 69–76 (2021).
Kavvadias, S., Drosatos, G. & Kaldoudi, E. Springer Nature Singapore,. An on-line service for matters and traits evaluation in medical literature. In World Congress on Medical Physics and Biomedical Engineering 2018 (Vol. 1) 481–485 (2018).
Sievert, C. & Shirley, Okay. LDAvis: a technique for visualizing and deciphering matters. In Proc. Workshop Interact. Lang. Learn. Vis. Interfaces 63–70 (2014).
Silge, J. & Robinson, D. Text Mining with R: A Tidy Approach. O’Reilly Media (2017).
Braun, V. & Clarke, V. One dimension matches all? What counts as high quality observe in (reflexive) thematic evaluation. Qual. Res. Psychol. 18, 328–352 (2021).
Kozinets, R. V. Netnography: the Essential Guide To Qualitative Social Media Research third edn (SAGE, 2020).
Association of Internet Researchers. Internet Research: Ethical Guidelines 3.0. (2019).
Braun, V. & Clarke, V. Using thematic evaluation in psychology. Qual. Res. Psychol. 3, 77–101 (2006).
Shaw, A. Netnography and a summative content material evaluation strategy to market analysis. J. Emerg. Trends Mark. Manag. 1, 12–22 (2020).
Paltoglou, G. Springer Vienna,. Sentiment evaluation in social media. In Online Collective Action: Dynamics of the Crowd in Social Media 3–17 (2014).
Hutto, C. J. & Gilbert, E. VADER: a parsimonious rule-based mannequin for sentiment evaluation of social media textual content. In Proc. International AAAI Conf. Weblogs Soc. Media 8, 216–225 (2014).
Mohammad, S. M. & Turney, P. D. Crowdsourcing a word-emotion affiliation lexicon. Comput. Intell. 29, 436–465 (2013).
Mohammad, S. M. & Turney, P. D. ACL,. Obtaining dependable human scores of valence, arousal, and dominance for 20,000 English phrases. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) 174–184 (2018).
Schivinski, B. & Dabrowski, D. Measuring shoppers’ engagement with brand-related social‐media content material: improvement and validation of a scale that identifies ranges of social‐media engagement. J. Advert. 45, 178–195 (2016).
Schivinski, B., Długosz, M. & Pontes, H. M. Influencing cobras: the results of brand name fairness on the buyer’s propensity to have interaction with brand-related content material on social media. J. Strat Mark. 29, 3–20 (2021).
De Choudhury, M. & De, S. Mental well being discourse on Reddit: self-disclosure, social assist, and anonymity. In Proc. Int. AAAI Conf. Web Soc. Media 8, 71–80 (2014).
Blaszczynski, A. & Nower, L. A pathways mannequin of drawback and pathological playing. Addiction 97, 487–499 (2002).
Griffiths, M. D. & Meredith, A. Videogame dependancy and its therapy. J. Contemp. Psychother. 39, 247–253 (2009).
Marlatt, G. A. & Gordon, J. R. Relapse Prevention: Maintenance Strategies within the Treatment of Addictive Behaviors (Guilford Press, 1985).
Pontes, H. M. et al. Measurement and conceptualization of gaming dysfunction based on the world well being group framework: the event of the gaming dysfunction check. Int J. Ment Health Addict (2021).
King, D. L., Delfabbro, P. H. & Griffiths, M. D. Clinical interventions for technology-based issues: extreme web and online game use. J. Cogn. Psychother. 26, 43 (2012).
Kourgiantakis, T., Saint-Jacques, M. C. & Tremblay, J. Problem playing and households: a scientific evaluation. J. Soc. Work Pract. Addict. 13, 353–372 (2013).
Bergstrom, Okay. & Poor, N. Reddit gaming communities throughout occasions of transition. Soc. Media Soc. 7, 2 (2021).
Griffiths, M. D., Kuss, D. J. & Demetrovics, Z. Social networking dependancy: an summary of preliminary findings. Behav. Addict. 119–141 (2014).
Estupiñá, F. J. et al. Emotional regulation in gaming dysfunction: a scientific evaluation. Am. J. Addict. 33, 605–620 (2024).
Johnson, D. et al. Gamification for well being and wellbeing: a scientific evaluation of the literature. Internet Interv. 6, 89–106 (2016).
Stavropoulos, V., Bamford, L., Beard, C., Gomez, R. & Griffiths, M. D. Test-retest measurement invariance of the nine-item web gaming dysfunction scale in two international locations: a preliminary longitudinal examine. Int. J. Ment Health Addict. 19, 2003–2020 (2021).
Király, O., Griffiths, M. D. & Demetrovics, Z. Internet gaming dysfunction and the DSM-5: Conceptualization, Debates, and controversies. Curr. Addict. Rep. 2, 254–262 (2015).
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, fifth version (DSM-5), Internet Gaming Disorder, Section III. American Psychiatric Association. (2013).
World Health Organization. Gaming dysfunction description & FAQ. ICD-11. (2019). https://www.who.int/standards/classifications/frequently-asked-questions/gaming-disorder.
Reddit Help. What filters and types can be found? Reddit Help Center. (2023).
Patton, M. Q. Qualitative Research & Evaluation Methods 4th edn (SAGE, 2015).
Malterud, Okay., Siersma, V. D. & Guassora, A. D. Sample dimension in qualitative interview research: guided by info energy. Qual. Health Res. 26, 1753–1760 (2016).
Guest, G., Bunce, A. & Johnson, L. How many interviews are sufficient? An experiment with knowledge saturation and variability. Field Methods. 18, 59–82 (2006).
Hennink, M. M., Kaiser, B. N. & Marconi, V. C. Code saturation versus which means saturation: what number of interviews are sufficient? Qual. Health Res. 27, 591–608 (2017).
Fugard, A. J. B. & Potts, H. W. W. Supporting pondering on pattern sizes for thematic analyses: a quantitative software. Int. J. Soc. Res. Methodol. 18, 669–684 (2015).
Kozinets, R. V. & Gambetti, R. Netnography Unlimited. Routledge (2021).
Wallach, H. M., Murray, I., Salakhutdinov, R. & Mimno, D. Evaluation strategies for matter fashions. In Proceedings of the twenty sixth annual worldwide convention on machine studying, 1105–1112 (2009).
Mimno, D., Wallach, H. M., Talley, E., Leenders, M. & McCallum, A. Optimizing semantic coherence in matter fashions. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, 262–272 (2011).
Rosner, F., Hinneburg, A., Röder, M., Nettling, M. & Both, A. Evaluating matter coherence measures. arXiv preprint arXiv:1403.6397 (2014).
This web page was created programmatically, to learn the article in its unique location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41598-025-33991-8
and if you wish to take away this text from our website please contact us
