Distance-amplified power-law distributions higher characterize human long-distance journey

This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41598-026-37165-y
and if you wish to take away this text from our web site please contact us


  • Barbosa, H. et al. Human mobility: Models and functions. Phys. Rep. 734, 1–74 (2018).


    Google Scholar
     

  • Gonzalez, M. C., Hidalgo, C. A. & Barabasi, A.-L. Understanding particular person human mobility patterns. Nature 453, 779–782 (2008).


    Google Scholar
     

  • Vespignani, A. Complex networks: the fragility of interdependency. Nature 464, 984–985 (2010).


    Google Scholar
     

  • Helbing, D., Farkas, I. & Vicsek, T. Simulating dynamical options of escape panic. Nature 407, 487–490 (2000).


    Google Scholar
     

  • Rozenfeld, H. D. et al. Laws of inhabitants development. Proc. Natl. Acad. Sci. 105, 18702–18707 (2008).


    Google Scholar
     

  • Horner, M. W. & O’Kelly, M. E. Embedding economies of scale ideas for hub community design. J. Transp. Geogr. 9, 255–265 (2001).


    Google Scholar
     

  • Wang, P., Hunter, T., Bayen, A. M., Schechtner, Okay. & González, M. C. Understanding highway utilization patterns in city areas. Sci. Rep. 2, 1001 (2012).


    Google Scholar
     

  • Pappalardo, L., Pedreschi, D., Smoreda, Z. & Giannotti, F. Using large knowledge to review the hyperlink between human mobility and socio-economic growth. In 2015 IEEE International Conference on Big Data (Big Data), 871–878 (IEEE, 2015).

  • Gabaix, X., Gopikrishnan, P., Plerou, V. & Stanley, H. E. A idea of power-law distributions in monetary market fluctuations. Nature 423, 267–270 (2003).


    Google Scholar
     

  • Banister, D. Cities, mobility and local weather change. J. Transp. Geogr. 19, 1538–1546 (2011).


    Google Scholar
     

  • Hufnagel, L., Brockmann, D. & Geisel, T. Forecast and management of epidemics in a globalized world. Proc. Natl. Acad. Sci. 101, 15124–15129 (2004).


    Google Scholar
     

  • Colizza, V., Barrat, A., Barthelemy, M., Valleron, A.-J. & Vespignani, A. Modeling the worldwide unfold of pandemic influenza: baseline case and containment interventions. PLoS Med. 4, e13 (2007).


    Google Scholar
     

  • Belik, V., Geisel, T. & Brockmann, D. Natural human mobility patterns and spatial unfold of infectious illnesses. Phys. Rev. X 1, 011001 (2011).


    Google Scholar
     

  • Kleinberg, J. The wi-fi epidemic. Nature 449, 287–288 (2007).


    Google Scholar
     

  • Alessandretti, L. What human mobility knowledge inform us about Covid-19 unfold. Nat. Rev. Phys. 4, 12–13 (2022).


    Google Scholar
     

  • Zhang, J. et al. The affect of stress-free interventions on human contact patterns and SARS-CoV-2 transmission in China. Sci. Adv. 7, eabe2584 (2021).


    Google Scholar
     

  • Chang, S. et al. Mobility community fashions of Covid-19 clarify inequities and inform reopening. Nature 589, 82–87 (2021).


    Google Scholar
     

  • Brockmann, D. & Helbing, D. The hidden geometry of complicated, network-driven contagion phenomena. Science 342, 1337–1342 (2013).


    Google Scholar
     

  • Brockmann, D., Hufnagel, L. & Geisel, T. The scaling legal guidelines of human journey. Nature 439, 462–465 (2006).


    Google Scholar
     

  • Wilkerson, G. J., Khalili, R. & Schmid, S. Urban mobility scaling: Lessons from ’little knowledge’. In 2014 Proceedings IEEE INFOCOM Workshops, Toronto, ON, Canada, April 27 – May 2, 2014, 777–782 (IEEE, 2014).

  • Song, C., Koren, T., Wang, P. & Barabási, A.-L. Modelling the scaling properties of human mobility. Nat. Phys. 6, 818–823 (2010).


    Google Scholar
     

  • Raichlen, D. A. et al. Evidence of Lévy stroll foraging patterns in human hunter-gatherers. Proc. Natl. Acad. Sci. 111, 728–733 (2014).


    Google Scholar
     

  • Viswanathan, G. M. et al. Optimizing the success of random searches. Nature 401, 911–914 (1999).


    Google Scholar
     

  • Alessandretti, L., Sapiezynski, P., Lehmann, S. & Baronchelli, A. Multi-scale spatio-temporal evaluation of human mobility. PLoS ONE 12, 1–17 (2017).


    Google Scholar
     

  • Yan, X.-Y., Han, X.-P., Wang, B.-H. & Zhou, T. Diversity of particular person mobility patterns and emergence of aggregated scaling legal guidelines. Sci. Rep. 3 (2013).

  • German Federal Ministry for Digital and Transport. Mobility in germany (MiD) survey. Data is maintained by the infas Instituted for Applied Social Sciences.

  • U.S. Department of Transportation. National family journey survey (NHTS). Data collected by Westat.

  • Schlosser, F. et al. Covid-19 lockdown induces disease-mitigating structural modifications in mobility networks. Proc. Natl. Acad. Sci. 117, 32883–32890 (2020).


    Google Scholar
     

  • Brownstein, J. S., Wolfe, C. J. & Mandl, Okay. D. Empirical proof for the impact of airline journey on inter-regional influenza unfold within the United States. PLoS Med. 3, 1–10 (2006).


    Google Scholar
     

  • Deutsche Bahn AG. Deutsche bahn 2022 built-in report (2022). Online: (Accessed 19 Jan 2026).

  • Robert Koch Institute (RKI). Covid-19 7-day incidence numbers per county in Germany (2021). Query on-line: (Accessed 19 Jan 2026).

  • Castro, M. et al. Spatiotemporal sample of Covid-19 unfold in Brazil. Science 372, 821–826 (2021).


    Google Scholar
     

  • Silva, G. C. & Ribeiro, E. M. S. The affect of Brazil’s transport community on the unfold of Covid-19. Sci. Rep. 13, 2240 (2023).


    Google Scholar
     

  • Ali, Y., Sharma, A. & Haque, M. M. Transportation and a pandemic: A case examine of Covid-19 pandemic. Integrated Risk of Pandemic: Covid-19 Impacts, Resilience and Recommendations 283–305 (2020).

  • Witzke, S., Danz, N., Baum, Okay. & Renard, B. Y. Mobility knowledge enhance forecasting of Covid-19 incidence developments utilizing graph neural networks. In sixth International Workshop on Epidemiology meets Data Mining and Knowledge Discovery (epiDAMIK) (2023).

  • Mandelbrot, B. B. & Mandelbrot, B. B. The Fractal Geometry of Nature, Vol. 1 (WH freeman New York, 1982).

  • Kleinberg, J. M. Navigation in a small world. Nature 406, 845–845 (2000).


    Google Scholar
     

  • Edwards, A. M. et al. Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449, 1044–1048 (2007).


    Google Scholar
     

  • Robert Koch Insitut (RKI). Bericht zu Virusvarianten von SARS-CoV-2 in Deutschland – 26. Mai 2021 (2021). (Accessed 19 Jan 2026).

  • Robert Koch Insitut (RKI). Bericht zu Virusvarianten von SARS-CoV-2 in Deutschland – 02. Juni 2021 (2021). (Accessed 19 Jan 2026).

  • Robert Koch Insitut (RKI). Bericht zu Virusvarianten von SARS-CoV-2 in Deutschland – 09. Juni 2021 (2021). (Accessed 19 Jan 2026).

  • Robert Koch Insitut (RKI). Bericht zu Virusvarianten von SARS-CoV-2 in Deutschland – 16. Juni 2021 (2021). (Accessed 19 Jan 2026).

  • Jurdak, R. et al. Understanding human mobility from twitter. PLoS ONE 10, 1–16 (2015).


    Google Scholar
     

  • Noulas, A., Scellato, S., Lambiotte, R., Pontil, M. & Mascolo, C. A story of many cities: Universal patterns in human city mobility. PLoS ONE 7, 1–10 (2012).


    Google Scholar
     

  • Gallotti, R., Bazzani, A., Rambaldi, S. & Barthelemy, M. A stochastic mannequin of randomly accelerated walkers for human mobility. Nat. Commun. 7 (2016).

  • Alessandretti, L., Aslak, U. & Lehmann, S. The scales of human mobility. Nature 587, 402–407 (2020).


    Google Scholar
     

  • Boucherie, L., Maier, B. F. & Lehmann, S. Decoupling geographical constraints from human mobility. Nat. Hum. Behav. (2025).

  • Nicolaides, C., Cueto-Felgueroso, L., González, M. C. & Juanes, R. A metric of influential spreading throughout contagion dynamics by the air transportation community. PLoS ONE 7, e40961 (2012).


    Google Scholar
     

  • Cabanas-Tirapu, O., Danús, L., Moro, E., Sales-Pardo, M. & Guimerà, R. Human mobility is nicely described by closed-form gravity-like fashions realized robotically from knowledge. Nat. Commun. 16 (2025).

  • Liu, E.-J. & Yan, X.-Y. A common alternative mannequin for human mobility. Sci. Rep. 10, 4657 (2020).


    Google Scholar
     

  • Simini, F., Barlacchi, G., Luca, M. & Pappalardo, L. A deep gravity mannequin for mobility flows era. Nat. Commun. 12, 6576 (2021).


    Google Scholar
     

  • Simini, F., González, M. C., Maritan, A. & Barabási, A.-L. A common mannequin for mobility and migration patterns. Nature 484, 96–100 (2012).


    Google Scholar
     

  • Chico, Q. C., Bright, J. & Hale, S. A. Diagnosing the efficiency of human mobility fashions at small spatial scales utilizing volunteered geographical info. R. Soc. Open Sci. 6 (2019).

  • Litmeyer, M.-L., Gareis, P. & Hennemann, S. Comparing scholar mobility sample fashions. Eur. J. Geogr. 14, 21–34 (2023).


    Google Scholar
     

  • Barthelemy, M. The Structure and Dynamics of Cities: Urban Data Analysis and Theoretical Modeling (Cambridge University Press, 2016).

  • Sims, D. W. et al. Scaling legal guidelines of marine predator search behaviour. Nature 451, 1098–1102 (2008).


    Google Scholar
     

  • Viswanathan, G. M. et al. Lévy flight search patterns of wandering albatrosses. Nature 381, 413–415 (1996).


    Google Scholar
     

  • Noulas, A., Scellato, S., Lambiotte, R., Pontil, M. & Mascolo, C. A story of many cities: common patterns in human city mobility. PLoS ONE 7, e37027 (2012).


    Google Scholar
     

  • Ajitesh, S. et al. Nowcasting temporal developments utilizing oblique surveys. In Annual AAAI Conference on Artificial Intelligence (2024).

  • Newman, M. E. J. Power legal guidelines, pareto distributions and zipf’s legislation. Contemp. Phys. 46, 323–351 (2005).


    Google Scholar
     

  • Makridakis, S. & Hibon, M. The m3-competition: outcomes, conclusions and implications. Int. J. Forecast. 16, 451–476 (2000).


    Google Scholar
     

  • Bos, Okay. et al. A draft genome of Yersinia Pestis from victims of the Black Death. Nature. 478 (2011).

  • Langer, W. Geographic and temporal growth of plagues. Sci. Am. 2, 114–121 (1964).


    Google Scholar
     

  • Barker, H. Laying the corpses to relaxation. grain, embargoes, and yersinia pestis within the black sea. Speculum. 96, 97–126 (2021).

  • Boyer, D., Miramontes, O. & Ramos-Fernández, G. Evidence for organic Lévy flights stands. arXiv preprint (2008).

  • Bojic, I., Massaro, E., Belyi, A., Sobolevsky, S. & Ratti, C. Choosing the fitting house location definition methodology for the given dataset. In Social Informatics (eds Liu, T.-Y. et al.), 194–208 (Springer International Publishing, 2015).

  • Park, S., Oshan, T. M., El Ali, A. & Finamore, A. Are we breaking bubbles as we transfer? utilizing a big pattern to discover the connection between city mobility and segregation. Comput. Environ. Urban Syst. 86, 101585 (2021).


    Google Scholar
     

  • Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical knowledge. SIAM Rev. 51, 661–703 (2009).


    Google Scholar
     

  • Zhao, Okay., Tarkoma, S., Liu, S. & Vo, H. T. Urban human mobility knowledge mining: An overview. In 2016 IEEE International Conference on Big Data (IEEE BigData 2016), Washington DC, USA, December 5-8, 2016, 1911–1920 (IEEE Computer Society, 2016).

  • Li, W., Wang, Q., Liu, Y., Small, M. L. & Gao, J. A spatiotemporal decay mannequin of human mobility when going through large-scale crises. Proc. Natl. Acad. Sci. 119 (2022).

  • Li, X. et al. Prediction of city human mobility utilizing large-scale taxi traces and its functions. Front. Comp. Sci. 6, 111–121 (2012).


    Google Scholar
     


  • This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
    https://www.nature.com/articles/s41598-026-37165-y
    and if you wish to take away this text from our web site please contact us