This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41598-026-37165-y
and if you wish to take away this text from our web site please contact us
Barbosa, H. et al. Human mobility: Models and functions. Phys. Rep. 734, 1–74 (2018).
Gonzalez, M. C., Hidalgo, C. A. & Barabasi, A.-L. Understanding particular person human mobility patterns. Nature 453, 779–782 (2008).
Vespignani, A. Complex networks: the fragility of interdependency. Nature 464, 984–985 (2010).
Helbing, D., Farkas, I. & Vicsek, T. Simulating dynamical options of escape panic. Nature 407, 487–490 (2000).
Rozenfeld, H. D. et al. Laws of inhabitants development. Proc. Natl. Acad. Sci. 105, 18702–18707 (2008).
Horner, M. W. & O’Kelly, M. E. Embedding economies of scale ideas for hub community design. J. Transp. Geogr. 9, 255–265 (2001).
Wang, P., Hunter, T., Bayen, A. M., Schechtner, Okay. & González, M. C. Understanding highway utilization patterns in city areas. Sci. Rep. 2, 1001 (2012).
Pappalardo, L., Pedreschi, D., Smoreda, Z. & Giannotti, F. Using large knowledge to review the hyperlink between human mobility and socio-economic growth. In 2015 IEEE International Conference on Big Data (Big Data), 871–878 (IEEE, 2015).
Gabaix, X., Gopikrishnan, P., Plerou, V. & Stanley, H. E. A idea of power-law distributions in monetary market fluctuations. Nature 423, 267–270 (2003).
Banister, D. Cities, mobility and local weather change. J. Transp. Geogr. 19, 1538–1546 (2011).
Hufnagel, L., Brockmann, D. & Geisel, T. Forecast and management of epidemics in a globalized world. Proc. Natl. Acad. Sci. 101, 15124–15129 (2004).
Colizza, V., Barrat, A., Barthelemy, M., Valleron, A.-J. & Vespignani, A. Modeling the worldwide unfold of pandemic influenza: baseline case and containment interventions. PLoS Med. 4, e13 (2007).
Belik, V., Geisel, T. & Brockmann, D. Natural human mobility patterns and spatial unfold of infectious illnesses. Phys. Rev. X 1, 011001 (2011).
Kleinberg, J. The wi-fi epidemic. Nature 449, 287–288 (2007).
Alessandretti, L. What human mobility knowledge inform us about Covid-19 unfold. Nat. Rev. Phys. 4, 12–13 (2022).
Zhang, J. et al. The affect of stress-free interventions on human contact patterns and SARS-CoV-2 transmission in China. Sci. Adv. 7, eabe2584 (2021).
Chang, S. et al. Mobility community fashions of Covid-19 clarify inequities and inform reopening. Nature 589, 82–87 (2021).
Brockmann, D. & Helbing, D. The hidden geometry of complicated, network-driven contagion phenomena. Science 342, 1337–1342 (2013).
Brockmann, D., Hufnagel, L. & Geisel, T. The scaling legal guidelines of human journey. Nature 439, 462–465 (2006).
Wilkerson, G. J., Khalili, R. & Schmid, S. Urban mobility scaling: Lessons from ’little knowledge’. In 2014 Proceedings IEEE INFOCOM Workshops, Toronto, ON, Canada, April 27 – May 2, 2014, 777–782 (IEEE, 2014).
Song, C., Koren, T., Wang, P. & Barabási, A.-L. Modelling the scaling properties of human mobility. Nat. Phys. 6, 818–823 (2010).
Raichlen, D. A. et al. Evidence of Lévy stroll foraging patterns in human hunter-gatherers. Proc. Natl. Acad. Sci. 111, 728–733 (2014).
Viswanathan, G. M. et al. Optimizing the success of random searches. Nature 401, 911–914 (1999).
Alessandretti, L., Sapiezynski, P., Lehmann, S. & Baronchelli, A. Multi-scale spatio-temporal evaluation of human mobility. PLoS ONE 12, 1–17 (2017).
Yan, X.-Y., Han, X.-P., Wang, B.-H. & Zhou, T. Diversity of particular person mobility patterns and emergence of aggregated scaling legal guidelines. Sci. Rep. 3 (2013).
German Federal Ministry for Digital and Transport. Mobility in germany (MiD) survey. Data is maintained by the infas Instituted for Applied Social Sciences.
U.S. Department of Transportation. National family journey survey (NHTS). Data collected by Westat.
Schlosser, F. et al. Covid-19 lockdown induces disease-mitigating structural modifications in mobility networks. Proc. Natl. Acad. Sci. 117, 32883–32890 (2020).
Brownstein, J. S., Wolfe, C. J. & Mandl, Okay. D. Empirical proof for the impact of airline journey on inter-regional influenza unfold within the United States. PLoS Med. 3, 1–10 (2006).
Deutsche Bahn AG. Deutsche bahn 2022 built-in report (2022). Online: (Accessed 19 Jan 2026).
Robert Koch Institute (RKI). Covid-19 7-day incidence numbers per county in Germany (2021). Query on-line: (Accessed 19 Jan 2026).
Castro, M. et al. Spatiotemporal sample of Covid-19 unfold in Brazil. Science 372, 821–826 (2021).
Silva, G. C. & Ribeiro, E. M. S. The affect of Brazil’s transport community on the unfold of Covid-19. Sci. Rep. 13, 2240 (2023).
Ali, Y., Sharma, A. & Haque, M. M. Transportation and a pandemic: A case examine of Covid-19 pandemic. Integrated Risk of Pandemic: Covid-19 Impacts, Resilience and Recommendations 283–305 (2020).
Witzke, S., Danz, N., Baum, Okay. & Renard, B. Y. Mobility knowledge enhance forecasting of Covid-19 incidence developments utilizing graph neural networks. In sixth International Workshop on Epidemiology meets Data Mining and Knowledge Discovery (epiDAMIK) (2023).
Mandelbrot, B. B. & Mandelbrot, B. B. The Fractal Geometry of Nature, Vol. 1 (WH freeman New York, 1982).
Kleinberg, J. M. Navigation in a small world. Nature 406, 845–845 (2000).
Edwards, A. M. et al. Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449, 1044–1048 (2007).
Robert Koch Insitut (RKI). Bericht zu Virusvarianten von SARS-CoV-2 in Deutschland – 26. Mai 2021 (2021). (Accessed 19 Jan 2026).
Robert Koch Insitut (RKI). Bericht zu Virusvarianten von SARS-CoV-2 in Deutschland – 02. Juni 2021 (2021). (Accessed 19 Jan 2026).
Robert Koch Insitut (RKI). Bericht zu Virusvarianten von SARS-CoV-2 in Deutschland – 09. Juni 2021 (2021). (Accessed 19 Jan 2026).
Robert Koch Insitut (RKI). Bericht zu Virusvarianten von SARS-CoV-2 in Deutschland – 16. Juni 2021 (2021). (Accessed 19 Jan 2026).
Jurdak, R. et al. Understanding human mobility from twitter. PLoS ONE 10, 1–16 (2015).
Noulas, A., Scellato, S., Lambiotte, R., Pontil, M. & Mascolo, C. A story of many cities: Universal patterns in human city mobility. PLoS ONE 7, 1–10 (2012).
Gallotti, R., Bazzani, A., Rambaldi, S. & Barthelemy, M. A stochastic mannequin of randomly accelerated walkers for human mobility. Nat. Commun. 7 (2016).
Alessandretti, L., Aslak, U. & Lehmann, S. The scales of human mobility. Nature 587, 402–407 (2020).
Boucherie, L., Maier, B. F. & Lehmann, S. Decoupling geographical constraints from human mobility. Nat. Hum. Behav. (2025).
Nicolaides, C., Cueto-Felgueroso, L., González, M. C. & Juanes, R. A metric of influential spreading throughout contagion dynamics by the air transportation community. PLoS ONE 7, e40961 (2012).
Cabanas-Tirapu, O., Danús, L., Moro, E., Sales-Pardo, M. & Guimerà, R. Human mobility is nicely described by closed-form gravity-like fashions realized robotically from knowledge. Nat. Commun. 16 (2025).
Liu, E.-J. & Yan, X.-Y. A common alternative mannequin for human mobility. Sci. Rep. 10, 4657 (2020).
Simini, F., Barlacchi, G., Luca, M. & Pappalardo, L. A deep gravity mannequin for mobility flows era. Nat. Commun. 12, 6576 (2021).
Simini, F., González, M. C., Maritan, A. & Barabási, A.-L. A common mannequin for mobility and migration patterns. Nature 484, 96–100 (2012).
Chico, Q. C., Bright, J. & Hale, S. A. Diagnosing the efficiency of human mobility fashions at small spatial scales utilizing volunteered geographical info. R. Soc. Open Sci. 6 (2019).
Litmeyer, M.-L., Gareis, P. & Hennemann, S. Comparing scholar mobility sample fashions. Eur. J. Geogr. 14, 21–34 (2023).
Barthelemy, M. The Structure and Dynamics of Cities: Urban Data Analysis and Theoretical Modeling (Cambridge University Press, 2016).
Sims, D. W. et al. Scaling legal guidelines of marine predator search behaviour. Nature 451, 1098–1102 (2008).
Viswanathan, G. M. et al. Lévy flight search patterns of wandering albatrosses. Nature 381, 413–415 (1996).
Noulas, A., Scellato, S., Lambiotte, R., Pontil, M. & Mascolo, C. A story of many cities: common patterns in human city mobility. PLoS ONE 7, e37027 (2012).
Ajitesh, S. et al. Nowcasting temporal developments utilizing oblique surveys. In Annual AAAI Conference on Artificial Intelligence (2024).
Newman, M. E. J. Power legal guidelines, pareto distributions and zipf’s legislation. Contemp. Phys. 46, 323–351 (2005).
Makridakis, S. & Hibon, M. The m3-competition: outcomes, conclusions and implications. Int. J. Forecast. 16, 451–476 (2000).
Bos, Okay. et al. A draft genome of Yersinia Pestis from victims of the Black Death. Nature. 478 (2011).
Langer, W. Geographic and temporal growth of plagues. Sci. Am. 2, 114–121 (1964).
Barker, H. Laying the corpses to relaxation. grain, embargoes, and yersinia pestis within the black sea. Speculum. 96, 97–126 (2021).
Boyer, D., Miramontes, O. & Ramos-Fernández, G. Evidence for organic Lévy flights stands. arXiv preprint (2008).
Bojic, I., Massaro, E., Belyi, A., Sobolevsky, S. & Ratti, C. Choosing the fitting house location definition methodology for the given dataset. In Social Informatics (eds Liu, T.-Y. et al.), 194–208 (Springer International Publishing, 2015).
Park, S., Oshan, T. M., El Ali, A. & Finamore, A. Are we breaking bubbles as we transfer? utilizing a big pattern to discover the connection between city mobility and segregation. Comput. Environ. Urban Syst. 86, 101585 (2021).
Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical knowledge. SIAM Rev. 51, 661–703 (2009).
Zhao, Okay., Tarkoma, S., Liu, S. & Vo, H. T. Urban human mobility knowledge mining: An overview. In 2016 IEEE International Conference on Big Data (IEEE BigData 2016), Washington DC, USA, December 5-8, 2016, 1911–1920 (IEEE Computer Society, 2016).
Li, W., Wang, Q., Liu, Y., Small, M. L. & Gao, J. A spatiotemporal decay mannequin of human mobility when going through large-scale crises. Proc. Natl. Acad. Sci. 119 (2022).
Li, X. et al. Prediction of city human mobility utilizing large-scale taxi traces and its functions. Front. Comp. Sci. 6, 111–121 (2012).
This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41598-026-37165-y
and if you wish to take away this text from our web site please contact us
