Gut microbial signatures expose the westernized life-style of city Ethiopian youngsters

This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s42003-026-09639-2
and if you wish to take away this text from our web site please contact us


  • Bäckhed, F. et al. Dynamics and stabilization of the human intestine microbiome throughout the first 12 months of life. Cell Host Microbe 17, 690–703 (2015).


    Google Scholar
     

  • Asnicar, F. et al. Studying vertical microbiome transmission from moms to infants by strain-level metagenomic profiling. mSystems 2, e00164–16 (2017).

  • Ferretti, P. et al. Mother-to-infant microbial transmission from totally different physique websites shapes the growing toddler intestine microbiome. Cell Host Microbe 24, 133–145 (2018).


    Google Scholar
     

  • Yassour, M. et al. Strain-level evaluation of mother-to-child bacterial transmission throughout the first few months of life. Cell Host Microbe 24, 146–154 (2018).


    Google Scholar
     

  • Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and construction of the preliminary microbiota throughout a number of physique habitats in newborns. Proc. Natl. Acad. Sci. USA 107, 11971–11975 (2010).


    Google Scholar
     

  • Bokulich, N. A. et al. Antibiotics, delivery mode, and eating regimen form microbiome maturation throughout youth. Sci. Transl. Med. 8, 343ra82 (2016).

  • Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section delivery. Nature 574, 117–121 (2019).


    Google Scholar
     

  • Stearns, J. C. et al. Intrapartum antibiotics for GBS prophylaxis alter colonization patterns within the early toddler intestine microbiome of low threat infants. Sci. Rep. 7, 1–9 (2017).


    Google Scholar
     

  • Yassour, M. et al. Natural historical past of the toddler intestine microbiome and influence of antibiotic therapy on bacterial pressure range and stability. Sci. Transl. Med. 8, 343ra81 (2016).

  • Selma-Royo, M. et al. Birthmode and environment-dependent microbiota transmission dynamics are complemented by breastfeeding throughout the first 12 months. Cell Host Microbe 32, 996–1010 (2024).


    Google Scholar
     

  • Shao, Y. et al. Primary succession of Bifidobacteria drives pathogen resistance in neonatal microbiota meeting. Nat. Microbiol. 9, 2570–2582 (2024).


    Google Scholar
     

  • Schwartz, D. J., Langdon, A. E. & Dantas, G. Understanding the influence of antibiotic perturbation on the human microbiome. Genome Med. 12, 1–12 (2020).


    Google Scholar
     

  • Manara, S. et al. Maternal and meals microbial sources form the toddler microbiome of a rural Ethiopian inhabitants. Curr. Biol. 33, 1939–1950. (2023).


    Google Scholar
     

  • Yatsunenko, T. et al. Human intestine microbiome seen throughout age and geography. Nature 486, 222–227 (2012).


    Google Scholar
     

  • Pasolli, E. et al. Extensive unexplored human microbiome range revealed by over 150,000 genomes from metagenomes spanning age, geography, and life-style. Cell 176, 649–662 (2019).


    Google Scholar
     

  • Maghini, D. G. et al. Expanding the human intestine microbiome atlas of Africa. Nature 638, 718–728 (2025).


    Google Scholar
     

  • Vangay, P. et al. US immigration westernizes the human intestine microbiome. Cell 175, 962–972 (2018).


    Google Scholar
     

  • De Filippo, C. et al. Impact of eating regimen in shaping intestine microbiota revealed by a comparative examine in youngsters from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 107, 14691–14696 (2010).


    Google Scholar
     

  • Tett, A. et al. The Prevotella copri complicated includes 4 distinct clades underrepresented in westernized populations. Cell Host Microbe 26, 666–679 (2019).


    Google Scholar
     

  • Smits, S. A. et al. Seasonal biking within the intestine microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–805 (2017).


    Google Scholar
     

  • Robertson, R. C. et al. The intestine microbiome and early-life development in a inhabitants with excessive prevalence of stunting. Nat. Commun. 14, 1–15 (2023).


    Google Scholar
     

  • Bowers, R. M. et al. Minimum details about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of micro organism and archaea. Nat. Biotechnol. 35, 725–731 (2017).


    Google Scholar
     

  • Hjorth, M. F. et al. Prevotella-to-bacteroides ratio predicts physique weight and fats loss success on 24-week diets various in macronutrient composition and dietary fiber: outcomes from a post-hoc evaluation. Int. J. Obes. 43, 149–157 (2018).


    Google Scholar
     

  • Arumugam, M. et al. Enterotypes of the human intestine microbiome. Nature 473, 174–180 (2011).


    Google Scholar
     

  • Roager, H. M., Licht, T. R., Poulsen, S. Okay., Larsen, T. M. & Bahl, M. I. Microbial enterotypes, inferred by the Prevotella-to-Bacteroides ratio, remained steady throughout a 6-month randomized managed eating regimen intervention with the brand new Nordic eating regimen. Appl. Environ. Microbiol. 80, 1142–1149 (2014).


    Google Scholar
     

  • Ramne, S. et al. Gut microbiota composition in relation to consumption of added sugar, sugar-sweetened drinks and artificially sweetened drinks within the Malmö offspring examine. Eur. J. Nutr. 60, 2087–2097 (2021).


    Google Scholar
     

  • Angelakis, E. et al. Treponema species enrich the intestine microbiota of conventional rural populations however are absent from city people. New Microbes New Infect. 27, 14–21 (2019).


    Google Scholar
     

  • Victora, C. G. et al. Revisiting maternal and youngster undernutrition in low-income and middle-income international locations: variable progress in direction of an unfinished agenda. Lancet 397, 1388–1399 (2021).


    Google Scholar
     

  • Ratnayani et al. Association of intestine microbiota composition with stunting incidence in youngsters below 5 in Jakarta slums. Nutrients 16, 3444 (2024).


    Google Scholar
     

  • Dinh, D. M. et al. Longitudinal evaluation of the intestinal microbiota in persistently stunted younger youngsters in South India. PLoS ONE 11, e0155405 (2016).


    Google Scholar
     

  • Gough, E. Okay. et al. Linear development faltering in infants is related to Acidaminococcus sp. and community-level modifications within the intestine microbiota. Microbiome 3, 1–10 (2015).


    Google Scholar
     

  • von Schwartzenberg, R. J. et al. Caloric restriction disrupts the microbiota and colonization resistance. Nature 595, 272–277 (2021).


    Google Scholar
     

  • Hardjo, J. & Selene, N. B. Stunting and intestine microbiota: a literature assessment. Pediatr. Gastroenterol. Hepatol. Nutr. 27, 137 (2024).


    Google Scholar
     

  • Llorca, L. et al. Characterization of the gastric microbiota in a pediatric inhabitants in response to Helicobacter pylori standing. Pediatr. Infect. Dis. J. 36, 173–178 (2017).


    Google Scholar
     

  • Brawner, Okay. M. et al. Helicobacter pylori an infection is related to an altered gastric microbiota in youngsters. Mucosal Immunol. 10, 1169–1177 (2017).


    Google Scholar
     

  • Frost, F. et al. Helicobacter pylori an infection associates with fecal microbiota composition and variety. Sci. Rep. 9, 1–10 (2019).


    Google Scholar
     

  • Gao, J. J. et al. Association between intestine microbiota and Helicobacter pylori-related gastric lesions in a high-risk inhabitants of gastric most cancers. Front. Cell. Infect. Microbiol. 8, 369735 (2018).


    Google Scholar
     

  • Benavides-Ward, A. et al. Helicobacter pylori and its relationship with variations of intestine microbiota in asymptomatic youngsters between 6 and 12 years. BMC Res. Notes 11, 1–7 (2018).


    Google Scholar
     

  • Osaki, T. et al. Influence of intestinal indigenous microbiota on intrafamilial an infection by Helicobacter pylori in Japan. Front. Immunol. 9, 325662 (2018).


    Google Scholar
     

  • Yang, L. et al. Helicobacter pylori an infection aggravates dysbiosis of intestine microbiome in youngsters with gastritis. Front. Cell. Infect. Microbiol. 9, 473388 (2019).


    Google Scholar
     

  • Lapidot, Y., Reshef, L., Cohen, D. & Muhsen, Okay. Helicobacter pylori and the intestinal microbiome amongst wholesome school-age youngsters. Helicobacter 26, e12854 (2021).


    Google Scholar
     

  • DuPont, H. L., Jiang, Z. D., Alexander, A. S., DuPont, A. W. & Brown, E. L. Intestinal IgA-coated micro organism in healthy- and altered-microbiomes (dysbiosis) and predictive worth in profitable fecal microbiota transplantation. Microorganisms 11, 93 (2022).


    Google Scholar
     

  • Hsieh, C.-S. et al. Altered IgA response to intestine micro organism is related to childhood bronchial asthma in Peru. J. Immunol. 207, 398–407 (2021).


    Google Scholar
     

  • Dzidic, M. et al. Aberrant IgA responses to the intestine microbiota throughout infancy precede bronchial asthma and allergy growth. J. Allergy Clin. Immunol. 139, 1017–1025 (2017).


    Google Scholar
     

  • Eriksen, C. et al. IgG and IgM cooperate in coating of intestinal micro organism in IgA deficiency. Nat. Commun. 14, 1–12 (2023).


    Google Scholar
     

  • Catanzaro, J. R. et al. IgA-deficient people exhibit intestine microbiota dysbiosis regardless of secretion of compensatory IgM. Sci. Rep. 9, 1–10 (2019).


    Google Scholar
     

  • Sterlin, D. et al. Human IgA binds a various array of commensal micro organism. J. Exp. Med. 217, e20181635 (2020).

  • Van Der Waaij, L. A. et al. Immunoglobulin coating of faecal micro organism in inflammatory. Eur. J. Gastroenterol. Hepatol. 16, 669–674 (2004).


    Google Scholar
     

  • Boutard, M. et al. Functional range of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass. PLoS Genet. 10, e1004773 (2014).


    Google Scholar
     

  • Gorvitovskaia, A., Holmes, S. P. & Huse, S. M. Interpreting prevotella and bacteroides as biomarkers of eating regimen and life-style. Microbiome 4, 1–12 (2016).


    Google Scholar
     

  • Du, S. et al. Children’s house environments as reservoirs of antimicrobial resistance: divergent urban-rural dangers from antibiotic resistance genes and pathogens. J. Hazard. Mater. 495, 139053 (2025).


    Google Scholar
     

  • Balachandra, S. S. et al. Antimicrobial resistance (AMR) on the group degree. J. Family Med. Prim. Care 10, 1404–1411 (2021).


    Google Scholar
     

  • Fredriksen, S., de Warle, S., van Baarlen, P., Boekhorst, J. & Wells, J. M. Resistome growth in disease-associated human intestine microbiomes. Microbiome 11, 166 (2023).


    Google Scholar
     

  • Gudeta, A. N., Andrén Aronsson, C., Binagdie, B. B., Girma, A. & Agardh, D. Incidence of celiac illness autoimmunity and associations with maternal tuberculosis and pediatric Helicobacter pylori infections in 4-year-old Ethiopian youngsters adopted up in an HLA genotyped delivery cohort. Front. Pediatr. 10, 999287 (2022).


    Google Scholar
     

  • Gudeta, A. N. et al. Distribution of HLA-DQ threat genotypes for celiac illness in Ethiopian youngsters. HLA 96, 681–687 (2020).


    Google Scholar
     

  • Andrew, S. FastQC: a high quality management device for top throughput sequence knowledge (2010).

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome knowledge science utilizing QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).


    Google Scholar
     

  • Callahan, B. J. et al. DADA2: high-resolution pattern inference from Illumina amplicon knowledge. Nat. Methods 13, 581–583 (2016).


    Google Scholar
     

  • Robeson II, M. S. et al. RESCRIPt: Reproducible sequence taxonomy reference database administration. PLOS Computational Biology 17, e1009581 (2021).

  • Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).

  • Pruesse, E. et al. SILVA: a complete on-line useful resource for high quality checked and aligned ribosomal RNA sequence knowledge appropriate with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).


    Google Scholar
     

  • Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize evaluation outcomes for a number of instruments and samples in a single report. Bioinformatics 32, 3047–3048 (2016).


    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a versatile trimmer for Illumina sequence knowledge. Bioinformatics 30, 2114–2120 (2014).


    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357 (2012).


    Google Scholar
     

  • Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. MetaSPAdes: a brand new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).


    Google Scholar
     

  • Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for sturdy and environment friendly genome reconstruction from metagenome assemblies. PeerJ 2019, e7359 (2019).


    Google Scholar
     

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the standard of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043 (2015).


    Google Scholar
     

  • Blanco-Míguez, A. et al. Extending and enhancing metagenomic taxonomic profiling with uncharacterized species utilizing MetaPhlAn 4. Nat. Biotechnol. 41, 1633–1644 (2023).


    Google Scholar
     

  • Beghini, F. et al. Integrating taxonomic, useful, and strain-level profiling of numerous microbial communities with bioBakery 3. Elife 10, e65088 (2021).


    Google Scholar
     

  • Asnicar, F. et al. Precise phylogenetic evaluation of microbial isolates and genomes from metagenomes utilizing PhyloPhlAn 3.0. Nat. Commun. 11, 1–10 (2020).


    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive tree of life (iTOL) v6: latest updates to the phylogenetic tree show and annotation device. Nucleic Acids Res. 52, W78–W82 (2024).


    Google Scholar
     

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation web site identification. BMC Bioinform. 11, 1–11 (2010).


    Google Scholar
     

  • Buchfink, B., Reuter, Okay. & Drost, H. G. Sensitive protein alignments at tree-of-life scale utilizing DIAMOND. Nat. Methods 18, 366–368 (2021).


    Google Scholar
     

  • Cantalapiedra, C. P., Hern̗andez-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: useful annotation, orthology assignments, and area prediction on the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).


    Google Scholar
     

  • Alcock, B. P. et al. CARD 2023: expanded curation, assist for machine studying, and resistome prediction on the complete antibiotic resistance database. Nucleic Acids Res. 51, D690–D699 (2023).


    Google Scholar
     

  • Oksanen, J. et al. Package vegan: Community Ecology Package https://vegandevs.github.io/vegan/, (2009).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (2016).

  • Chen, Y., Chen, L., Lun, A. T. L., Baldoni, P. L. & Smyth, G. Okay. edgeR v4: highly effective differential evaluation of sequencing knowledge with expanded performance and improved assist for small counts and bigger datasets. Nucleic Acids Res. 53, gkaf018 (2025).

  • Nickols, W. A. et. al. MaAsLin 3: refining and increasing generalized multivariable linear fashions for meta-omic affiliation discovery. Nat. Methods (2026).

  • Ripley, B. Package ‘MASS’ (2025).

  • Koneswarakantha, B. easyalluvial: Generate Alluvial Plots with a Single Line of Code (2025).

  • Kirsche, L. Iydiakirsche/urban-ethiopian-children-microbiome: model 1.0.0. (2026).


  • This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
    https://www.nature.com/articles/s42003-026-09639-2
    and if you wish to take away this text from our web site please contact us