This page was generated programmatically; to view the article at its original source, please follow the link below:
https://www.nature.com/articles/s41612-025-00906-3
and for any requests to have this article removed from our website, kindly reach out to us
Bowman, D. M. et al. Vegetation fires during the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).
Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M. & Gowman, L. M. Effects of climate change on global wildland fire. Int. J. Wildland Fire 18, 483–507 (2009).
Bowman, D. M. et al. The role of fire in Earth’s system. Science 324, 481–484 (2009).
Marlon, J. R. et al. Climate and anthropogenic effects on global biomass burning over the last two millennia. Nat. Geosci. 1, 697–702 (2008).
Senande-Rivera, M., Insua-Costa, D. & Miguez-Macho, G. Temporal and spatial increase of global wildland fire activity in relation to climate change. Nat. Commun. 13, 1208 (2022).
Turetsky, M. R. et al. Global susceptibility of peatlands to fire and carbon emissions. Nat. Geosci. 8, 11–14 (2015).
Randerson, J. T. et al. The influence of boreal forest fires on climate change. Science 314, 1130–1132 (2006).
Archibald, S., Lehmann, C. E., Gómez-Dans, J. L. & Bradstock, R. A. Establishing pyromes and global patterns of fire regimes. Proc. Natl Acad. Sci. 110, 6442–6447 (2013).
Kelley, D. I. et al. How present-day bioclimatic and anthropogenic factors modify global fire patterns. Nat. Clim. Change 9, 690–696 (2019).
Bowd, E. J., Banks, S. C., Strong, C. L. & Lindenmayer, D. B. Prolonged effects of wildfires and logging on forest substrates. Nat. Geosci. 12, 113–118 (2019).
Harrison, S. P. et al. Comprehending and simulating wildfire patterns: an ecological viewpoint. Environ. Res. Lett. 16, 125008 (2021).
Pellegrini, A. F. et al. The frequency of fire influences decadal variations in soil carbon and nitrogen along with ecosystem productivity. Nature 553, 194–198 (2018).
Andela, N. et al. A decline in global burned area driven by human activity. Science 356, 1356–1362 (2017).
Johnston, F. H. et al. Projected global fatalities linked to smoke from landscape fires. Environ. Health Perspect. 120, 695–701 (2012).
Bowman, D. M. et al. Human vulnerability and response to globally extreme wildfire incidents. Nat. Ecol. Evol. 1, 0058 (2017).
IPCC. Climate Change 2021: The Scientific Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. vol. In Press (2021).
Reed, K. A., Stansfield, A. M., Wehner, M. F. & Zarzycki, C. M. Predicted attribution of human impact on Hurricane Florence. Sci. Adv. 6, eaaw9253 (2020).
Reed, K. A., Wehner, M. F. & Zarzycki, C. M. Linking extreme rainfall of the 2020 hurricane season to human-caused climate variation. Nat. Commun. 13, 1905 (2022).
Eden, J. M., Wolter, K., Otto, F. E. L. & Oldenborgh, G. J. Multi-faceted attribution examination of severe precipitation in Boulder, Colorado. Environ. Res. Lett. 11, 124009 (2016).
Eden, J. M. et al. Intense precipitation in the Netherlands: a case study of event attribution. Weather Clim. Extrem. 21, 90–101 (2018).
Philip, S. Y. et al. Swift attribution study of the remarkable heat wave impacting the Pacific coast of the US and Canada in June 2021. Earth Syst. Dyn. 13, 1689–1713 (2022).
González-Alemán, J. J. et al. Human-induced warming played a significant role in catalyzing the historic and devastating Mediterranean Derecho during Summer 2022. Bull. Am. Meteorol. Soc. 104, E1526–E1532 (2023).
Jolly, W. M. et al. Climate-driven fluctuations in global wildfire risk from 1979 to 2013. Nat. Commun. 6, 7537 (2015).
Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global trends of interannual climate–fire associations. Glob. Change Biol. 24, 5164–5175 (2018).
Ellis, T. M., Bowman, D. M., Jain, P., Flannigan, M. D. & Williamson, G. J. Worldwide surge in wildfire hazard owing to climate-induced reductions in fuel moistness. Glob. Change Biol. 28, 1544–1559 (2022).
Liu, Z., Eden, J. M., Dieppois, B. & Blackett, M. A comprehensive perspective on recorded alterations in fire weather extremes: uncertainties and attribution to climate transformation. Clim. Change 173, 14 (2022).
Jones, M. W. et al. Global and local patterns and factors affecting fire under climate change. Rev. Geophys. 60, e2020RG000726 (2022).
Williams, A. P. & Abatzoglou, J. T. Recent developments and existing uncertainties regarding past and future climatic impacts on global fire activity. Curr. Clim. Change Rep. 2, 1–14 (2016).
Shepherd, T. G. et al. Narratives: a different method for depicting uncertainty in the physical domains of climate change. Clim. Change 151, 555–571 (2018).
Clarke, H. et al. Wildfires jeopardize global carbon reservoirs and population hubs due to escalating atmospheric water demand. Nat. Commun. 13, 7161 (2022).
Williams, A. P. et al. Documented effects of human-induced climate change on wildfires in California. Earths Future 7, 892–910 (2019).
Ruffault, J. et al. Enhanced probability of heat-triggered large wildfires in the Mediterranean region. Sci. Rep. 10, 13790 (2020).
Turco, M. et al. The critical influence of droughts on the occurrence of summer fires in Mediterranean Europe. Sci. Rep. 7, 1–10 (2017).
Shepherd, T. G. Atmospheric circulation as an origin of unpredictability in climate change forecasts. Nat. Geosci. 7, 703–708 (2014).
Zhu, Z. et al. The greening of the Earth and its determinants. Nat. Clim. Change 6, 791–795 (2016).
Wu, M. et al. Reactivity of burnt area in Europe to climate change, atmospheric CO2 concentrations, and population: a comparative analysis of two fire-vegetation models. J. Geophys. Res. Biogeosciences 120, 2256–2272 (2015).
Pausas, J. G. & Keeley, J. E. Wildfires and global transformation. Front. Ecol. Environ. 19, 387–395 (2021).
Allen, R. J., Gomez, J., Horowitz, L. W. & Shevliakova, E. Increased vegetation growth in the future due to elevated carbon dioxide levels may lead to heightened fire activity. Commun. Earth Environ. 5, 1–15 (2024).
Turco, M. et al. Anthropogenic climate change effects intensify summer wildfires in California. Proc. Natl Acad. Sci. 120, e2213815120 (2023).
Canadell, J. G. et al. The multi-decadal growth of forest burned area in Australia correlates with climate change. Nat. Commun. 12, 6921 (2021).
Turco, M. et al. Diminishing wildfires in Mediterranean Europe. PLoS One 11, e0150663 (2016).
Giannaros, T. M., Kotroni, V. & Lagouvardos, K. Climatological and trend study (1987–2016) of fire weather across the Euro-Mediterranean region. Int. J. Climatol. 41, E491–E508 (2021).
Turco, M. et al. Intensified fires in Mediterranean Europe attributable to human-induced warming projected using non-stationary climate-fire models. Nat. Commun. 9, 3821 (2018).
Calheiros, T., Pereira, M. & Nunes, J. P. Evaluating the effects of upcoming climate shift on extreme fire weather and pyro-regions in the Iberian Peninsula. Sci. Total Environ. 754, 142233 (2021).
Turco, M. et al. Climatic factors influencing the catastrophic fires of 2017 in Portugal. Sci. Rep. 9, 13886 (2019).
Rodrigues, M. et al. Factors and consequences of the severe 2022 wildfire season in Southern Europe. Sci. Total Environ. 859, 160320 (2023).
Teckentrup, L. et al. Reaction of modeled burned area to past variations in environmental and human factors: a comparison of seven fire models. Biogeosciences 16, 3883–3910 (2019).
Pausas, J. G. & Paula, S. Fuel influences the fire–climate connection: findings from Mediterranean ecosystems. Glob. Ecol. Biogeogr. 21, 1074–1082 (2012).
Andrews, P. L. The Rothermel Surface Fire Spread Model and Associated Developments: A Detailed Explanation. (2018).
Jolly, W. M., Nemani, R. & Running, S. W. A comprehensive, bioclimatic metric to forecast foliar phenology in relation to climate. Glob. Change Biol. 11, 619–632 (2005).
Piao, S. et al. Attributes, drivers and responses of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).
Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global rise of human-induced climate change in fire weather metrics. Geophys. Res. Lett. 46, 326–336 (2019).
Jain, P., Castellanos-Acuna, D., Coogan, S. C., Abatzoglou, J. T. & Flannigan, M. D. Documented rises in extreme fire weather caused by atmospheric humidity and temperature. Nat. Clim. Change 12, 63–70 (2022).
Van Wagner, C. Formation and Framework of the Canadian Forest Fire Weather Index System. (1987).
Van Wagner, C. & Pickett, T. Formulas and FORTRAN Program for the Canadian Forest Fire Weather Index System. (1985).
Jiménez-Ruano, A., Rodrigues Mimbrero, M. & de la Riva Fernández, J. Investigating spatial–temporal dynamics of wildfire regime characteristics in mainland Spain. Nat. Hazards Earth Syst. Sci. 17, 1697–1711 (2017).
Wotton, B. M., Flannigan, M. D. & Marshall, G. A. Possible climate change effects on fire intensity and crucial wildfire suppression thresholds in Canada. Environ. Res. Lett. 12, 095003 (2017).
Rodrigues, M., Alcasena, F. & Vega-García, C. Simulating initial attack efficacy of wildfire containment in Catalonia, Spain. Sci. Total Environ. 666, 915–927 (2019).
San-Miguel-Ayanz, J., Moreno, J. M. & Camia, A. Evaluation of large wildfires in European Mediterranean ecosystems: Insights gained and outlook. Ecol. Manag. 294, 11–22 (2013).
Podschwit, H. & Cullen, A. Trends and patterns in concurrent wildfire occurrences across the United States from 1984 to 2015. Int. J. Wildland Fire 29, 1057–1071 (2020).
McGinnis, S. et al. Predicted regional increases in simultaneous large wildfires across the Western USA. Int. J. Wildland Fire 32, 1304–1314 (2023).
Damoah, R. et al. An examination of pyro-convection employing transport model and remote sensing information. Atmos. Chem. Phys. 6, 173–185 (2006).
Campos, C., Couto, F. T., Filippi, J.-B., Baggio, R. & Salgado, R. Simulating the pyro-convection effect during a mega-fire occurrence in Portugal. Atmos. Res 290, 106776 (2023).
Peterson, D. A. et al. The 2013 Rim Fire: Consequences for forecasting rapid fire propagation, pyroconvection, and smoke discharge. Bull. Am. Meteorol. Soc. 96, 229–247 (2015).
Peterson, D. A. et al. Thunderstorms induced by wildfires result in a volcano-like stratospheric smoke injection. Npj Clim. Atmos. Sci. 1, 1–8 (2018).
Fromm, M., Servranckx, R., Stocks, B. J. & Peterson, D. A. Grasping the essential components of the pyrocumulonimbus storm ignited by intense wildland fire. Commun. Earth Environ. 3, 1–7 (2022).
Fromm, M. et al. The hidden narrative of pyrocumulonimbus. Bull. Am. Meteorol. Soc. 91, 1193–1210 (2010).
Potter, B. E. Interactions in the atmosphere with wildland fire dynamics–II. Plume and vortex mechanics. Int. J. Wildland Fire 21, 802–817 (2012).
McRae, R. H., Sharples, J. J. & Fromm, M. Connecting local wildfire behaviors to pyroCb progression. Nat. Hazards Earth Syst. Sci. 15, 417–428 (2015).
Dowdy, A. J., Fromm, M. D. & McCarthy, N. Pyrocumulonimbus electrical activity and fire ignition during Black Saturday in southeast Australia. J. Geophys. Res. Atmospheres 122, 7342–7354 (2017).
Peterson, D. A. et al. Australia’s Black Summer pyrocumulonimbus super eruption indicates a potential for increasingly severe stratospheric smoke incidents. Npj Clim. Atmos. Sci. 4, 1–16 (2021).
Bedia, J. et al. Worldwide trends in the responsiveness of burned terrain to fire-weather: Consequences for climate change. Agric. Meteorol. 214, 369–379 (2015).
El Garroussi, S., Di Giuseppe, F., Barnard, C. & Wetterhall, F. Europe confronts a tenfold surge in extreme wildfires due to a warming climate. Npj Clim. Atmos. Sci. 7, 1–11 (2024).
Tejedor, E. et al. Recent heat waves as a precursor to climate extremes in the western Mediterranean area. Npj Clim. Atmos. Sci. 7, 1–7 (2024).
Serrano-Notivoli, R. et al. Extraordinary warmth: An examination of Spain’s remarkable summer of 2022. Atmos. Res 293, 106931 (2023).
Büntgen, U. et al. Current summer heat over the western Mediterranean region is unparalleled since medieval epochs. Glob. Planet. Change 232, 104336 (2024).
Brotons, L., Aquilué, N., de Cáceres, M., Fortin, M.-J. & Fall, A. The influence of fire history, fire suppression strategies, and climate change on wildfire dynamics in Mediterranean Landscapes. PLOS ONE 8, e62392 (2013).
Moreno, M. V., Conedera, M., Chuvieco, E. & Pezzatti, G. B. Transformations in fire regimes and significant influencing factors in Spain from 1968 to 2010. Environ. Sci. Policy 37, 11–22 (2014).
Ruffault, J. & Mouillot, F. In what way a novel fire-suppression policy can dramatically alter the fire-weather connection. Ecosphere 6, art199 (2015).
Cunningham, C. X., Williamson, G. J. & Bowman, D. M. J. S. Rising frequency and severity of the most severe wildfires on the planet. Nat. Ecol. Evol. 8, 1420–1425 (2024).
Vicedo-Cabrera, A. M., Esplugues, A., Iñíguez, C., Estarlich, M. & Ballester, F. Effects on health from the 2012 Valencia (Spain) wildfires in children in a cohort analysis. Environ. Geochem. Health 38, 703–712 (2016).
Cascio, W. E. Smoke from wildland fires and its impact on human health. Sci. Total Environ. 624, 586–595 (2018).
Pacheco, R. M. & Claro, J. Defining the influence of wildfires on ecosystem services: a triangulation of scientific insights, governmental documents, and expert judgment in Portugal. Environ. Sci. Policy 142, 194–205 (2023).
Nunes, J. P. et al. Afforestation, Subsequent
“““html
Forest Fires and Delivery of Hydrological Functions: a Model-Based Examination for a Mediterranean Mountainous Watershed. Land Degrad. Dev. 29, 776–788 (2018).
Moritz, M. A. et al. Adapting to coexist with wildfire. Nature 515, 58–66 (2014).
McWethy, D. B. et al. Reevaluating resilience to wildfire. Nat. Sustain. 2, 797–804 (2019).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Riahi, K. et al. The shared socioeconomic trajectories and their energy, agrarian use, and greenhouse gas emissions outcomes: an overview. Glob. Environ. Change 42, 153–168 (2017).
Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas levels and their prospects to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).
Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: justification and experimental setup. Geosci. Model Dev. 9, 2973–2998
“`(2016).
Rothermel, R. C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels. (1972).
Nelson Jr, R. M. Assessment of diurnal variation in 10-h fuel stick moisture content. Can. J. Res. 30, 1071–1087 (2000).
Carlson, J. D., Bradshaw, L. S., Nelson, R. M., Bensch, R. R. & Jabrzemski, R. Utilization of the Nelson model across four timelag fuel categories via Oklahoma field observations: model assessment and juxtaposition with National Fire Danger Rating System algorithms. Int. J. Wildland Fire 16, 204–216 (2007).
Yebra, M. et al. Globe-LFMC, a worldwide plant water status repository for vegetation ecophysiology and wildfire initiatives. Sci. Data 6, 155 (2019).
Aragoneses, E., García, M., Salis, M., Ribeiro, L. M. & Chuvieco, E. Categorization and cartography of European fuels applying a hierarchical, multipurpose fuel classification framework. Earth Syst. Sci. Data 15, 1287–1315 (2023).
Scott, J. H. & Burgan, R. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model. (2005).
Brogli, R., Heim, C., Mensch, J., Sørland, S. L. & Schär, C. The pseudo-global-warming (PGW) framework: methodology, software suite PGW4ERA5 v1.1, validation, and sensitivity assessments. Geosci. Model Dev. 16, 907–926 (2023).
Schär, C., Frei, C., Lüthi, D. & Davies, H. C. Representative climate change scenarios for regional climate models. Geophys. Res. Lett. 23, 669–672 (1996).
This page was generated programmatically. To view the article in its original setting, please follow the link below:
https://www.nature.com/articles/s41612-025-00906-3
if you wish to have this article removed from our site, please reach out to us