This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09307-1
and if you wish to take away this text from our web site please contact us
Costello, M. J. et al. Marine biogeographic realms and species endemicity. Nat. Commun. 8, 1057 (2017).
Victorero, L. et al. Global benthic biogeographical areas and macroecological drivers for ophiuroids. Ecography 2023, e06627 (2023).
Woolley, S. N. C. et al. Deep-sea range patterns are formed by vitality availability. Nature 533, 393–396 (2016).
Rabosky, D. L. et al. An inverse latitudinal gradient in speciation price for marine fishes. Nature 559, 392–395 (2018).
O’Hara, T. D., Hugall, A. F., Woolley, S. N. C., Bribiesca-Contreras, G. & Bax, N. J. Contrasting processes drive ophiuroid phylodiversity throughout shallow and deep seafloors. Nature 565, 636–639 (2019).
Vermeij, G. J. When biotas meet: understanding biotic interchange. Science 253, 1099–1104 (1991).
McClain, C. R. & Hardy, S. M. The dynamics of biogeographic ranges within the deep-sea. Proc. Roy. Soc. B 277, 3533–3546 (2010).
Taylor, M. L. & Roterman, C. N. Invertebrate inhabitants genetics throughout Earth’s largest habitat: the deep-sea ground. Mol. Ecol. 26, 4872–4896 (2017).
O’Hara, T. & Hugall, A. Global seafloor connectivity over evolutionary time. Dryad (2025).
Stöhr, S., O’Hara, T. D. & Thuy, B. Global range of brittle stars (Echinodermata: Ophiuroidea). PLoS ONE 7, e31940 (2012).
O’Hara, T. D., Hugall, A. F., Thuy, B. & Moussalli, A. Phylogenomic decision of the Class Ophiuroidea unlocks a world microfossil document. Curr. Biol. 24, 1874–1879 (2014).
O’Hara, T. D., Thuy, B. & Hugall, A. F. Relict from the Jurassic: new household of brittle-stars from a New Caledonian seamount. Proc. Roy. Soc. B 288, 20210684 (2021).
O’Hara, T. D., Hugall, A. F., Thuy, B., Stöhr, S. & Martynov, A. V. Restructuring greater taxonomy utilizing broad-scale phylogenomics: the dwelling Ophiuroidea. Mol. Phylogenet. Evol. 107, 415–430 (2017).
Friedman, S. T. & Muñoz, M. M. A latitudinal gradient of deep-sea invasions for marine fishes. Nat. Commun. 14, 773 (2023).
Mironov, A. N., Dilman, A. & Kylova, E. M. Global distribution patterns of genera occurring within the Arctic Ocean deeper 2000 m. Invertebr. Zool. 10, 167–194 (2013).
Thuy, B. et al. Ancient origin of the fashionable deep-sea fauna. PLoS ONE 7, e46913 (2012).
Crame, J. A. & McGowan, A. J. Origin of the tropical–polar biodiversity distinction. Glob. Ecol. Biogeogr. 31, 1207–1227 (2022).
Bluhm, B. A. et al. Diversity of the Arctic deep-sea benthos. Mar. Biodivers. 41, 87–107 (2011).
Bribiesca-Contreras, G., Verbruggen, H., Hugall, A. F. & O’Hara, T. D. The significance of offshore origination revealed via ophiuroid phylogenomics. Proc. Roy. Soc. B 284, 20170160 (2017).
Brown, A. & Thatje, S. Explaining bathymetric range patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. Biol. Rev. Camb. Philos. Soc. 89, 406–426 (2014).
Bribiesca-Contreras, G., Verbruggen, H., Hugall, A. F. & O’Hara, T. D. Spatio-temporal patterns of tropical shallow-water brittle stars. J. Biogeogr. 46, 1287–1299 (2019).
Vermeij, G. J. Anatomy of an invasion: the trans-Arctic interchange. Paleobiology 17, 281–307 (1991).
Tierney, J. E. et al. Glacial cooling and local weather sensitivity revisited. Nature 584, 569–573 (2020).
Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimal zones within the japanese tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77, 331–350 (2008).
Khon, V. C., Hoogakker, B. A. A., Schneider, B., Segschneider, J. & Park, W. Effect of an open Central American Seaway on ocean circulation and the oxygen minimal zone within the tropical Pacific from mannequin simulations. Geophys. Res. Lett. 50, e2023GL103728 (2023).
O’Hara, T. D., England, P. R., Gunasekera, R. & Naughton, Okay. M. Limited phylogeographic construction for 5 bathyal ophiuroids at continental scales. Deep Sea Res. I 84, 18–28 (2014).
O’Hara, T. D. & Thuy, B. Biogeography and taxonomy of Ophiuroidea (Echinodermata) from the Îles Saint-Paul and Amsterdam within the southern Indian Ocean. Zootaxa 5124, 1–49 (2022).
Branch, T. A. A assessment of orange roughy Hoplostethus atlanticus fisheries, estimation strategies, biology and inventory construction. S. Afr. J. Mar. Sci. 23, 181–203 (2001).
Tong, R. et al. Environmental drivers and the distribution of cold-water corals within the world ocean. Front. Mar. Sci. (2023).
Henry, L.-A. et al. Global ocean conveyor lowers extinction threat within the deep sea. Deep Sea Res. I 88, 8–16 (2014).
Gubili, C. et al. Species range within the cryptic abyssal holothurian Psychropotes longicauda (Echinodermata). Deep Sea Res. II 137, 288–296 (2017).
Meißner, Okay., Schwentner, M., Götting, M., Knebelsberger, T. & Fiege, D. Polychaetes distributed throughout oceans—examples of broadly recorded species from abyssal depths of the Atlantic and Pacific Oceans. Zool. J. Linn. Soc. 199, 906–944 (2023).
Kaiser, S. et al. Diversity, distribution and composition of abyssal benthic Isopoda in a area proposed for deep-seafloor mining of polymetallic nodules: a synthesis. Mar. Biodivers. 53, 30 (2023).
Meckler, A. N. et al. Cenozoic evolution of deep ocean temperature from clumped isotope thermometry. Science 377, 86–90 (2022).
Auderset, A. et al. Enhanced ocean oxygenation throughout Cenozoic heat intervals. Nature 609, 77–82 (2022).
Christodoulou, M., O’Hara, T. D., Hugall, A. F. & Arbizu, P. M. Dark ophiuroid biodiversity in a potential abyssal mine discipline. Curr. Biol. 29, 3909–3912 (2019).
Christodoulou, M. et al. Unexpected excessive abyssal ophiuroid range in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation. Biogeosciences 17, 1845–1876 (2020).
Young, C. M., Sewell, M. A., Tyler, P. A. & Metaxas, A. Biogeographic and bathymetric ranges of Atlantic deep-sea echinoderms and ascidians: the function of larval dispersal. Biodivers. Conserv. 6, 1507–1522 (1997).
Ricklefs, R. E. A complete framework for world patterns in biodiversity. Ecol. Lett. 7, 1–15 (2004).
Ree, R. H., Webb, C. O. & Donoghue, M. J. A probability framework for inferring the evolution of geographic vary on phylogenetic bushes. Evolution 59, 2299–2311 (2005).
Goldberg, E. E., Lancaster, L. T. & Ree, R. H. Phylogenetic inference of reciprocal results between geographic vary evolution and diversification. Syst. Biol. 60, 451–465 (2011).
Landis, M. J., Matzke, N. J., Moore, B. R. & Huelsenbeck, J. P. Bayesian evaluation of biogeography when the variety of areas is giant. Syst. Biol. 62, 789–804 (2013).
Lewis, P. O. A probability strategy to estimating phylogeny from discrete morphological character information. Syst. Biol. 50, 913–925 (2001).
Vermeij, G. J. et al. The temperate marine Peruvian Province: how historical past accounts for its uncommon biota. Ecol. Evol. 14, e70048 (2024).
Hollyman, P. R. et al. Bioregionalization of the South Sandwich Islands via group evaluation of bathyal fish and invertebrate assemblages utilizing fishery-derived information. Deep Sea Res. II 198, 105054 (2022).
Hugall, A. F., O’Hara, T. D., Hunjan, S., Nilsen, R. & Moussalli, A. An exon-capture system for your complete class Ophiuroidea. Mol. Biol. Evol. 33, 281–294 (2016).
Parey, E. et al. The brittle star genome illuminates the genetic foundation of animal appendage regeneration. Nat. Ecol. Evol. 8, 1505–1521 (2024).
Stamatakis, A. RAxML-VI-HPC: most likelihood-based phylogenetic analyses with hundreds of taxa and combined fashions. Bioinformatics 22, 2688–2690 (2006).
Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a quick, scalable and user-friendly device for optimum probability phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).
Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation utilizing penalized probability for giant phylogenies. Bioinformatics 28, 2689–2690 (2012).
Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary evaluation by sampling bushes. BMC Evol. Biol. 7, 214 (2007).
Title, P. O. et al. The macroevolutionary singularity of snakes. Science 383, 918–923 (2024).
Henríquez-Piskulich, P., Hugall, A. F. & Stuart-Fox, D. A supermatrix phylogeny of the world’s bees (Hymenoptera: Anthophila). Mol. Phylogenet. Evol. 190, 107963 (2024).
FitzJohn, R. G. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).
Sanmartín, I. & Meseguer, A. S. Extinction in phylogenetics and biogeography: from timetrees to patterns of biotic assemblage. Front. Genet. 7, 35 (2016).
Paradis, E., Claude, J. & Strimmer, Okay. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
Revell, L. J. phytools: an R package deal for phylogenetic comparative biology (and different issues). Methods Ecol. Evol. 3, 217–223 (2012).
Morlon, H. et al. RPANDA: an R package deal for macroevolutionary analyses on phylogenetic bushes. Methods Ecol. Evol. 7, 589–597 (2016).
Stadler, T. Simulating bushes with a hard and fast variety of extant species. Syst. Biol. 60, 676–684 (2011).
Mazet, N., Morlon, H., Fabre, P.-H. & Condamine, F. L. Estimating clade-specific diversification charges and palaeodiversity dynamics from reconstructed phylogenies. Methods Ecol. Evol. 14, 2575–2591 (2023).
Louca, S. & Pennell, M. W. Why extinction estimates from extant phylogenies are so typically zero. Curr. Biol. 31, 3168–3173 (2021).
Louca, S. & Doebeli, M. Efficient comparative phylogenetics on giant bushes. Bioinformatics 34, 1053–1055 (2017).
Swenson, N. G. Phylogenetic beta range metrics, trait evolution and inferring the practical beta range of communities. PLoS ONE 6, e21264 (2011).
Tucker, C. M. et al. A information to phylogenetic metrics for conservation, group ecology and macroecology. Biol. Rev. Camb. Philos. Soc. 92, 698–715 (2017).
Oksanen, J. et al. vegan: Community Ecology Package. R package deal v.2.5-6 (CRAN, 2019).
Ivan, J. et al. Temperature predicts the speed of molecular evolution in Australian Eugongylinae skinks. Evolution 76, 252–261 (2022).
Orton, M. G., May, J. A., Ly, W., Lee, D. J. & Adamowicz, S. J. Is molecular evolution sooner within the tropics? Heredity 122, 513–524 (2019).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in fashions of trait dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances round visualization in R. Bioinformatics 30, 2811–2812 (2014).
GEBCO Bathymetric Compilation Group 2019. The GEBCO_2019 Grid – a steady terrain mannequin of the worldwide oceans and land. British Oceanographic Data Centre (2019).
Boyer, T. P. et al. World Ocean Atlas 2018. Temperature, Salinity and Dissolved Oxygen. (NOAA National Centers for Environmental Information, accessed 22 May 2020); www.ncei.noaa.gov/archive/accession/NCEI-WOA18.
This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09307-1
and if you wish to take away this text from our web site please contact us
