This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s44160-025-00846-z
and if you wish to take away this text from our web site please contact us
Fraser-Reid, B. O., Tatsuta, Ok. & Thiem, J. Glycoscience Chemistry and Chemical Biology 2nd edn (Springer, 2008).
Ohtsubo, Ok. & Marth, J. D. Glycosylation in mobile mechanisms of well being and illness. Cell 126, 855–867 (2006).
Dube, D. H. & Bertozzi, C. R. Glycans in most cancers and irritation—potential for therapeutics and diagnostics. Nat. Rev. Drug. Disc. 4, 477–488 (2005).
Park, Y. et al. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions. Science 355, 162–166 (2017).
Deng, L.-F. et al. Palladium catalysis permits cross-coupling-like SN2-glycosylation of phenols. Science 382, 928–935 (2023).
Nguyen, H. M. et al. Phenanthroline‐catalyzed stereoretentive glycosylations. Angew. Chem. Int. Ed. 58, 6957–6961 (2019).
Yu, B. Gold(I)-catalyzed glycosylation with glycosyl O-alkynylbenzoates as donors. Acc. Chem. Res. 51, 507–516 (2018).
Guberman, M. & Seeberger, P. H. Automated glycan meeting: a perspective. J. Am. Chem. Soc. 141, 5581–5592 (2019).
Panza, M., Pistorio, S. G., Stine, Ok. J. & Demchenko, A. V. Automated chemical oligosaccharide synthesis: novel method to conventional challenges. Chem. Rev. 118, 8105–8150 (2018).
Wang, W. Glycomedicine: the present cutting-edge. Engineering 26, 12–15 (2023).
Bennett, C. S. Selective Glycosylations: Synthetic Methods and Catalysts (John Wiley & Sons, 2017).
Nigudkar, S. S. & Demchenko, A. V. Stereocontrolled 1,2-cis glycosylation because the driving power of progress in artificial carbohydrate chemistry. Chem. Sci. 6, 2687–2704 (2015).
Adero, P. O., Amarasekara, H., Wen, P., Bohé, L. & Crich, D. The experimental proof in help of glycosylation mechanisms on the SN1–SN2 interface. Chem. Rev. 118, 8242–8284 (2018).
Levi, S. M., Li, Q., Rötheli, A. R. & Jacobsen, E. N. Catalytic activation of glycosyl phosphates for stereoselective coupling reactions. Proc. Nat. Acad. Sci. USA 116, 35–39 (2019).
Ma, X. et al. A “traceless” directing group permits catalytic SN2 glycosylation towards 1,2-cis-glycopyranosides. J. Am. Chem. Soc. 143, 11908–11913 (2021).
Kim, J.-H., Yang, H., Park, J. & Boons, G.-J. A normal technique for stereoselective glycosylations. J. Carbohydr. Chem. 127, 12090–12097 (2005).
Issa, J. P. & Bennett, C. S. A reagent-controlled SN2-glycosylation for the direct synthesis of β-linked 2-deoxy-sugars. J. Am. Chem. Soc. 136, 5740–5744 (2014).
Ma, X., Zhang, Y., Zhu, X., Wei, Y. & Zhang, L. Directed SN2 glycosylation using an amide-functionalized 1-naphthoate platform that includes a selectivity-safeguarding mechanism. J. Am. Chem. Soc. 145, 11921–11926 (2023).
Ma, X., Zhang, Y., Zhu, X. & Zhang, L. An SN2-type technique towards 1, 2-cis-furanosides. CCS Chem. 4, 3677–3685 (2022).
Laurence, C., Brameld, Ok. A., Graton, J., Le Questel, J.-Y. & Renault, E. The pKBHX database: towards a greater understanding of hydrogen-bond basicity for medicinal chemists. J. Med. Chem. 52, 4073–4086 (2009).
Liu, X. et al. 2-Diphenylphosphinoyl-acetyl as a distant directing group for the extremely stereoselective synthesis of β-glycosides. Chin. J. Chem. 40, 443–452 (2022).
Liu, X. et al. Direct synthesis of two,6-dideoxy-β-glycosides and β-rhamnosides with a stereodirecting 2-(diphenylphosphinoyl)acetyl group. Angew. Angew. Chem. Int. Ed. 61, e202206128 (2022).
Njeri, D. Ok., Valenzuela, E. A. & Ragains, J. R. Leveraging trifluoromethylated benzyl teams towards the extremely 1,2-cis-selective glucosylation of reactive alcohols. Org. Lett. 23, 8214–8218 (2021).
Li, Q., Levi, S. M. & Jacobsen, E. N. Highly selective β-mannosylations and β-rhamnosylations catalyzed bybis-thiourea. J. Am. Chem. Soc. 142, 11865–11872 (2020).
Cato, D., Buskas, T. & Boons, G. J. Highly environment friendly stereospecific preparation of Tn and Tf constructing blocks utilizing thioglycosyl donors and the Ph2SO/Tf2O promotor system. J. Carbohydr. Chem. 24, 503–516 (2005).
Kuduk, S. D. et al. Synthetic and immunological research on clustered modes of mucin-related Tn and Tf O-linked antigens: the preparation of a glycopeptide-based vaccine for medical trials towards prostate most cancers. J. Am. Chem. Soc. 120, 12474–12485 (1998).
Hou, D. & Lowary, T. L. Recent advances within the synthesis of 2-deoxy-glycosides. Carbohydr. Res. 344, 1911–1940 (2009).
Mayfield, A. B., Metternich, J. B., Trotta, A. H. & Jacobsen, E. N. Stereospecific furanosylations catalyzed by bis-thiourea hydrogen-bond donors. J. Am. Chem. Soc. 142, 4061–4069 (2020).
Xu, H., Schaugaard, R. N., Li, J., Schlegel, H. B. & Nguyen, H. M. Stereoselective 1,2-cis furanosylations catalyzed by phenanthroline. J. Am. Chem. Soc. 144, 7441–7456 (2022).
Zhao, C., Li, M., Luo, Y. & Wu, W. Isolation and structural characterization of an immunostimulating polysaccharide from fuzi, Aconitum carmichaeli. Carbohydr. Res. 341, 485–491 (2006).
Lemieux, R. U., Hendriks, Ok. B., Stick, R. V. & James, Ok. Halide ion catalyzed glycosidation reactions. syntheses of α-linked disaccharides. J. Am. Chem. Soc. 97, 4056–4062 (1975).
This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s44160-025-00846-z
and if you wish to take away this text from our web site please contact us
