This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09349-5
and if you wish to take away this text from our website please contact us
Lenton, T. M. et al. The Global Tipping Points Report 2023 (Univ. of Exeter, 2023). This report assesses Earth system and social tipping factors, aiming to tell decision-makers and the general public concerning the dangers and alternatives related to the pressing world challenges of local weather change and biodiversity loss.
Biggs, R., Carpenter, S. R. & Brock, W. A. Turning again from the brink: detecting an impending regime shift in time to avert it. Proc. Natl Acad. Sci. USA 106, 826–831 (2009).
Rocha, J. C., Peterson, G., Bodin, Ö. & Levin, S. Cascading regime shifts inside and throughout scales. Science 362, 1379–1383 (2018).
Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem administration. Annu. Rev. Ecol. Evolut. Systemat. 35, 557–581 (2004).
Armstrong McKay, D. I. et al. Exceeding 1.5 °C world warming might set off a number of local weather tipping factors. Science 377, eabn7950 (2022).
Kopp, R. E. et al. ‘Tipping points’ confuse and might distract from pressing local weather motion. Nat. Clim. Change 15, 29–36 (2025). This article critiques the tipping factors framework by analyzing the historical past and effectiveness of this framework, and offers suggestions for clearer and extra particular descriptions of abrupt modifications to raised inform determination making.
IPCC. Summary for Policymakers, in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner H.-O. et al.) (Cambridge Univ. Press, 2019).
Meredith, M. et al. Polar Regions, in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 203–320 (Cambridge Univ. Press, 2019).
Fox-Kemper, B. et al. Ocean, Cryosphere and Sea Level Change, in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge Univ. Press, 2021).
Constable, A. J. et al. Cross-Chapter Paper 6: Polar Regions, in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) 2319–2368 (Cambridge Univ. Press, 2022).
Turner, J., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J. & Phillips, T. Recent modifications in Antarctic Sea Ice. Phil. Trans. R. Soc. A 373, 20140163 (2015).
Bintanja, R., van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B. & Katsman, C. A. Important function for ocean warming and elevated ice-shelf soften in Antarctic sea-ice enlargement. Nat. Geosci. 6, 376–379 (2013).
Holland, P. R. & Kwok, R. Wind-driven traits in Antarctic sea-ice drift. Nat. Geosci. 5, 872–875 (2012).
Ferreira, D., Marshall, J., Bitz, C. M., Solomon, S. & Plumb, A. Antarctic Ocean and sea ice response to ozone depletion: a two-time-scale downside. J. Clim. 28, 1206–1226 (2015).
Banerjee, A., Fyfe, J. C., Polvani, L. M., Waugh, D. & Chang, Ok.-L. A pause in Southern Hemisphere circulation traits as a result of Montreal Protocol. Nature 579, 544–548 (2020).
Schroeter, S., O’Kane, T. J. & Sandery, P. A. Antarctic sea ice regime shift related to lowering zonal symmetry within the Southern Annular Mode. The Cryosphere 17, 701–717 (2023).
Siegert, M. J. et al. Antarctic excessive occasions. Front. Environ. Sci. (2023).
Gilbert, E. & Holmes, C. 2023’s Antarctic sea ice extent is the bottom on report. Weather 79, 46–51 (2024).
Purich, A. & Doddridge, E. W. Record low Antarctic sea ice protection signifies a brand new sea ice state. Commun. Earth Environ. 4, 314 (2023). This influential examine demonstrates that Antarctic sea ice has shifted to a brand new low sea-ice state, and connects this regime shift to the confluence with subsurface warming of the Southern Ocean.
Hobbs, W. et al. Observational proof for a regime shift in summer season Antarctic sea ice. J. Clim. 37, 2263–2275 (2024).
Fogt, R. L., Sleinkofer, A. M., Raphael, M. N. & Handcock, M. S. A regime shift in seasonal whole Antarctic sea ice extent within the twentieth century. Nat. Clim. Change 12, 54–62 (2022). This examine developed an observation-based reconstruction of Antarctic sea-ice extent that demonstrated the rise in Antarctic sea ice in the course of the satellite tv for pc period was uncommon in a twentieth century context, and in addition offers a foundation for demonstrating the extraordinary nature of abrupt sea-ice loss since 2014.
Dalaiden, Q. et al. An unprecedented sea ice retreat within the Weddell Sea driving an total lower of the Antarctic sea-ice extent over the twentieth century. Geophys. Res. Lett. 50, e2023GL104666 (2023).
Goosse, H., Dalaiden, Q., Feba, F., Mezzina, B. & Fogt, R. L. A drop in Antarctic sea ice extent on the finish of the Nineteen Seventies. Commun. Earth Environ. 5, 628 (2024).
Raphael, M. N., Maierhofer, T. J., Fogt, R. L., Hobbs, W. R. & Handcock, M. S. A twenty-first century structural change in Antarctica’s sea ice system. Commun. Earth Environ. 6, 131 (2025).
Maierhofer, T. J., Raphael, M. N., Fogt, R. L. & Handcock, M. S. A Bayesian mannequin for twentieth century Antarctic sea ice extent reconstruction. Earth Space Sci. 11, e2024EA003577 (2024).
Morioka, Y. et al. Antarctic sea ice multidecadal variability triggered by Southern Annular Mode and deep convection. Commun. Earth Environ. 5, 633 (2024).
Boers, N. Observation-based early-warning alerts for a collapse of the Atlantic Meridional Overturning Circulation. Nat. Clim. Change 11, 680–688 (2021).
Dakos, V. et al. Tipping level detection and early warnings in local weather, ecological, and human techniques. Earth Syst. Dynam. 15, 1117–1135 (2024).
Espinosa, Z. I., Blanchard-Wrigglesworth, E. & Bitz, C. M. Understanding the drivers and predictability of report low Antarctic sea ice in austral winter 2023. Commun. Earth Environ. 5, 723 (2024).
Zhang, L. et al. The relative function of the subsurface Southern Ocean in driving damaging Antarctic Sea ice extent anomalies in 2016–2021. Commun. Earth Environ. 3, 302 (2022).
Himmich, Ok. et al. Thermodynamics drive post-2016 modifications within the Antarctic sea ice seasonal cycle. J. Geophys. Res. Oceans 129, e2024JC021112 (2024).
Lenton, T. M. et al. Tipping components within the Earth’s local weather system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).
Chamberlain, M. A., Ziehn, T. & Law, R. M. The Southern Ocean because the local weather’s freight practice—driving ongoing world warming below zero-emission situations with ACCESS-ESM1.5. Biogeosciences 21, 3053–3073 (2024).
King, A. D. et al. Exploring local weather stabilisation at completely different world warming ranges in ACCESS-ESM-1.5. Earth Syst. Dynam. 15, 1353–1383 (2024).
Morioka, Y. et al. Role of anthropogenic forcing in Antarctic sea ice variability simulated in local weather fashions. Nat. Commun. 15, 10511 (2024).
King, A. D., Abram, N. J., Alastrué de Asenjo, E. & Ziehn, T. ESD Ideas: Extended internet zero simulations are essential for knowledgeable determination making. EGUsphere (2025).
Holmes, C. R., Bracegirdle, T. J., Holland, P. R., Stroeve, J. & Wilkinson, J. New views on the talent of modelled sea ice traits in gentle of latest Antarctic sea ice loss. Cryosphere 18, 5641–5652 (2024). This paper demonstrates that latest unprecedented Antarctic sea-ice loss challenges the talent of present local weather fashions in precisely predicting sea-ice traits, emphasizing the pressing want for mannequin refinements to raised seize potential abrupt modifications.
Duspayev, A., Flanner, M. G. & Riihelä, A. Earth’s sea ice radiative impact from 1980 to 2023. Geophys. Res. Lett. 51, e2024GL109608 (2024).
Rantanen, M. et al. The Arctic has warmed practically 4 occasions quicker than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).
Vogt, L. et al. Increased future ocean warmth uptake constrained by Antarctic sea ice extent. Preprint at Res. Sq. (2025).
England, M. R., Polvani, L. M., Sun, L. & Deser, C. Tropical local weather responses to projected Arctic and Antarctic sea-ice loss. Nat. Geosci. 13, 275–281 (2020).
Ayres, H. C., Screen, J. A., Blockley, E. W. & Bracegirdle, T. J. The coupled environment–ocean response to Antarctic sea ice loss. J. Clim. 35, 4665–4685 (2022).
Zhou, S. et al. Slowdown of Antarctic Bottom Water export pushed by climatic wind and sea-ice modifications. Nat. Clim. Change 13, 701–709 (2023).
Silvano, A. et al. Recent restoration of Antarctic Bottom Water formation within the Ross Sea pushed by local weather anomalies. Nat. Geosci. 13, 780–786 (2020).
Josey, S. A. et al. Record-low Antarctic sea ice in 2023 elevated ocean warmth loss and storms. Nature 636, 635–639 (2024).
Reid, P. A. & Massom, R. A. Change and variability in Antarctic coastal publicity, 1979–2020. Nat. Commun. 13, 1164 (2022).
Fretwell, P. T., Boutet, A. & Ratcliffe, N. Record low 2022 Antarctic sea ice led to catastrophic breeding failure of emperor penguins. Commun. Earth Environ. 4, 273 (2023). The catastrophic regional-scale breeding failure of emperor penguins in 2022 resulting from report low Antarctic sea ice underscores the vulnerability of polar ecosystems to climate-driven abrupt change, highlighting the potential for irreversible ecological shifts.
Kawaguchi, S. et al. Climate change impacts on Antarctic krill behaviour and inhabitants dynamics. Nat. Rev. Earth Environ. 5, 43–58 (2024).
McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D. & Brown-Leger, S. Collapse and fast resumption of Atlantic meridional circulation linked to deglacial local weather modifications. Nature 428, 834–837 (2004).
Abernathey, R. P. et al. Water-mass transformation by sea ice within the higher department of the Southern Ocean overturning. Nat. Geosci. 9, 596–601 (2016).
Heuzé, C. Antarctic Bottom Water and North Atlantic Deep Water in CMIP6 fashions. Ocean Sci. 17, 59–90 (2021).
Purich, A. & England, M. H. Historical and future projected warming of Antarctic Shelf Bottom Water in CMIP6 fashions. Geophys. Res. Lett. 48, e2021GL092752 (2021).
de Lavergne, C., Palter, J. B., Galbraith, E. D., Bernardello, R. & Marinov, I. Cessation of deep convection within the open Southern Ocean below anthropogenic local weather change. Nat. Clim. Change 4, 278–282 (2014).
Lago, V. & England, M. H. Projected slowdown of Antarctic Bottom Water formation in response to amplified meltwater contributions. J. Clim. 32, 6319–6335 (2019).
Li, Q., England, M. H., Hogg, A. M., Rintoul, S. R. & Morrison, A. Ok. Abyssal ocean overturning slowdown and warming pushed by Antarctic meltwater. Nature 615, 841–847 (2023). Using a high-resolution ocean mannequin that captures the 4 recognized areas of Antarctic Bottom Water formation, this examine initiatives a 40% slowdown of the Antarctic Overturning Circulation by 2050 in response to anticipated will increase in Antarctic meltwater.
Huneke, W. G. C., Hobbs, W. R., Klocker, A. & Naughten, Ok. A. Dynamic response to ice shelf basal meltwater related to clarify noticed sea ice traits close to the Antarctic Continental Shelf. Geophys. Res. Lett. 50, e2023GL105435 (2023).
Jacobs, S. S., Giulivi, C. F. & Dutrieux, P. Persistent Ross Sea freshening from imbalance West Antarctic ice shelf melting. J. Geophys. Res. Oceans 127, e2021JC017808 (2022).
Gunn, Ok. L., Rintoul, S. R., England, M. H. & Bowen, M. M. Recent lowered abyssal overturning and air flow within the Australian Antarctic Basin. Nat. Clim. Change 13, 537–544 (2023). Observations from the Australian Antarctic Basin present that over latest many years there was a discount in Antarctic Bottom Water transport, coincident with a powerful freshening on the continental shelf; this discovering is bolstered by equal observations from the Weddell sector (ref. 43).
Schmidt, C., Morrison, A. Ok. & England, M. H. Wind- and sea-ice-driven interannual variability of Antarctic Bottom Water formation. J. Geophys. Res. Oceans 128, e2023JC019774 (2023).
Adkins, J. F. The function of deep ocean circulation in setting glacial climates. Paleoceanography 28, 539–561 (2013).
Ferrari, R. et al. Antarctic sea ice management on ocean circulation in current and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).
Burke, A. & Robinson, L. F. The Southern Ocean’s function in carbon change in the course of the Last Deglaciation. Science 335, 557–561 (2012).
Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328, 1147–1151 (2010).
Rae, J. W. B. et al. CO2 storage and launch within the deep Southern Ocean on millennial to centennial timescales. Nature 562, 569–573 (2018).
Huang, H., Gutjahr, M., Eisenhauer, A. & Kuhn, G. No detectable Weddell Sea Antarctic Bottom Water export in the course of the Last and Penultimate Glacial Maximum. Nat. Commun. 11, 424 (2020).
Weber, M. E. et al. Millennial-scale variability in Antarctic ice-sheet discharge over the past deglaciation. Nature 510, 134–138 (2014).
Yeung, N. Ok. H., Menviel, L., Meissner, Ok. J. & Sikes, E. Assessing the spatial origin of meltwater pulse 1A utilizing oxygen-isotope fingerprinting. Paleoceanogr. Paleoclimatol. 34, 2031–2046 (2019).
Golledge, N. R. et al. Antarctic contribution to meltwater pulse 1A from lowered Southern Ocean overturning. Nat. Commun. 5, 5107 (2014).
Turney, C. S. M. et al. Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica. Proc. Natl Acad. Sci. USA 117, 3996–4006 (2020).
Blackburn, T. et al. Ice retreat in Wilkes Basin of East Antarctica throughout a heat interglacial. Nature 583, 554–559 (2020).
Hayes, C. T. et al. A stagnation occasion within the deep South Atlantic over the past interglacial interval. Science 346, 1514–1517 (2014).
Glasscock, S. Ok., Hayes, C. T., Redmond, N. & Rohde, E. Changes in Antarctic Bottom Water formation throughout interglacial durations. Paleoceanogr. Paleoclimatol. 35, e2020PA003867 (2020).
Rohling, E. J. et al. Asynchronous Antarctic and Greenland ice-volume contributions to the final interglacial sea-level highstand. Nat. Commun. 10, 5040 (2019).
Yeung, N. Ok.-H. et al. Last Interglacial subsurface warming on the Antarctic shelf triggered by lowered deep-ocean convection. Commun. Earth Environ. 5, 212 (2024).
Bronselaer, B. et al. Change in future local weather resulting from Antarctic meltwater. Nature 564, 53–58 (2018). Global local weather impacts of Antarctic meltwater are proven to be far-reaching utilizing a coupled local weather mannequin, figuring out world floor temperature modifications, shifting tropical precipitation and subsurface warming across the Antarctic margins that will speed up ice shelf basal melting.
Ribeiro, N. et al. Warm modified Circumpolar Deep Water intrusions drive ice shelf soften and inhibit dense shelf water formation in Vincennes Bay, East Antarctica. J. Geophys. Res. Oceans 126, e2020JC016998 (2021).
Rintoul, S. R. et al. Ocean warmth drives fast basal soften of the Totten Ice Shelf. Sci. Adv. 2, e1601610 (2016).
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L. & Siegfried, M. R. Interannual variations in meltwater enter to the Southern Ocean from Antarctic ice cabinets. Nat. Geosci. 13, 616–620 (2020).
Naughten, Ok. A., Holland, P. R. & De Rydt, J. Unavoidable future improve in West Antarctic ice-shelf melting over the twenty-first century. Nat. Clim. Change 13, 1222–1228 (2023). Regional ocean modelling finds fast ocean warming within the Amundsen Sea for a variety of various emission situations, suggesting that future mitigation efforts can not stop ocean-driven melting of ice cabinets on this area.
Ribeiro, N. et al. Oceanic regime shift to a hotter continental shelf adjoining to the Shackleton Ice Shelf, East Antarctica. J. Geophys. Res. Oceans 128, e2023JC019882 (2023).
Mathiot, P. & Jourdain, N. C. Southern Ocean warming and Antarctic ice shelf melting in circumstances believable by late twenty third century in a high-end state of affairs. Ocean Sci. 19, 1595–1615 (2023).
Gottschalk, J. et al. Biological and bodily controls within the Southern Ocean on previous millennial-scale atmospheric CO2 modifications. Nat. Commun. 7, 11539 (2016).
Long, M. C. et al. Strong Southern Ocean carbon uptake evident in airborne observations. Science 374, 1275–1280 (2021).
Liu, Y., Moore, J. Ok., Primeau, F. & Wang, W. L. Reduced CO2 uptake and rising nutrient sequestration from slowing overturning circulation. Nat. Clim. Change 13, 83–90 (2023).
Dong, Y., Pauling, A. G., Sadai, S. & Armour, Ok. C. Antarctic ice-sheet meltwater reduces transient warming and local weather sensitivity by way of the sea-surface temperature sample impact. Geophys. Res. Lett. 49, e2022GL101249 (2022).
Shin, S.-J. et al. Southern Ocean management of two °C world warming in local weather fashions. Earth Future 11, e2022EF003212 (2023).
Garbe, J., Albrecht, T., Levermann, A., Donges, J. F. & Winkelmann, R. The hysteresis of the Antarctic Ice Sheet. Nature 585, 538–544 (2020).
Rosier, S. H. R. et al. The tipping factors and early warning indicators for Pine Island Glacier, West Antarctica. Cryosphere 15, 1501–1516 (2021).
Pattyn, F. & Morlighem, M. The unsure way forward for the Antarctic Ice Sheet. Science 367, 1331–1335 (2020).
Schoof, C. Ice sheet grounding line dynamics: regular states, stability, and hysteresis. J. Geophys. Res. Earth Surf. (2007).
Weertman, J. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 3–11 (1974).
Stokes, C. R. et al. Response of the East Antarctic Ice Sheet to previous and future local weather change. Nature 608, 275–286 (2022). This paper reveals the potential vulnerability of the East Antarctic Ice Sheet to previous and future local weather change, highlighting its contribution to sea-level rise and underscoring the significance of understanding ice sheet dynamics within the context of local weather tipping factors.
Dutton, A. & Lambeck, Ok. Ice quantity and sea stage in the course of the Last Interglacial. Science 337, 216–219 (2012).
Dumitru, O. A. et al. Last interglacial world imply sea stage from high-precision U-series ages of Bahamian fossil coral reefs. Quat. Sci. Rev. 318, 108287 (2023).
Lau, S. C. Y. et al. Genomic proof for West Antarctic Ice Sheet collapse in the course of the Last Interglacial. Science 382, 1384–1389 (2023). This examine makes use of novel genetic indicators to deduce that the West Antarctic Ice Sheet underwent main collapse over the past heat interval in Earth’s previous when world temperatures have been just like current day.
Wolff, E. W. et al. The Ronne Ice Shelf survived the final interglacial. Nature 638, 133–137 (2025).
Iizuka, M. et al. Multiple episodes of ice loss from the Wilkes Subglacial Basin in the course of the Last Interglacial. Nat. Commun. 14, 2129 (2023).
Hutchinson, D. Ok., Menviel, L., Meissner, Ok. J. & Hogg, A. M. East Antarctic warming compelled by ice loss in the course of the Last Interglacial. Nat. Commun. 15, 1026 (2024).
DeConto, R. M. & Pollard, D. Contribution of Antarctica to previous and future sea-level rise. Nature 531, 591–597 (2016).
Otosaka, I. N. et al. Mass steadiness of the Greenland and Antarctic ice sheets from 1992 to 2020. Earth Syst. Sci. Data 15, 1597–1616 (2023).
Rignot, E. et al. Four many years of Antarctic Ice Sheet mass steadiness from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019).
Shepherd, A. et al. Mass steadiness of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018).
Smith, B. et al. Pervasive ice sheet mass loss displays competing ocean and environment processes. Science 368, 1239–1242 (2020).
Gudmundsson, G. H., Paolo, F. S., Adusumilli, S. & Fricker, H. A. Instantaneous Antarctic ice sheet mass loss pushed by thinning ice cabinets. Geophys. Res. Lett. 46, 13903–13909 (2019).
Reese, R., Gudmundsson, G. H., Levermann, A. & Winkelmann, R. The far attain of ice-shelf thinning in Antarctica. Nat. Clim. Change 8, 53–57 (2018).
Konrad, H. et al. Net retreat of Antarctic glacier grounding strains. Nat. Geosci. 11, 258–262 (2018).
Milillo, P. et al. Rapid glacier retreat charges noticed in West Antarctica. Nat. Geosci. 15, 48–53 (2022).
Favier, L. et al. Retreat of Pine Island Glacier managed by marine ice-sheet instability. Nat. Clim. Change 4, 117–121 (2014).
Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse doubtlessly underway for the Thwaites Glacier Basin, West Antarctica. Science 344, 735–738 (2014).
Mouginot, J., Rignot, E. & Scheuchl, B. Sustained improve in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Res. Lett. 41, 1576–1584 (2014).
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, fast grounding line retreat of Pine Island, Thwaites, Smith and Kohler glaciers, West Antarctica from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).
Ritz, C. et al. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature 528, 115–118 (2015).
Christie, F. D. W., Steig, E. J., Gourmelen, N., Tett, S. F. B. & Bingham, R. G. Inter-decadal local weather variability induces differential ice response alongside Pacific-facing West Antarctica. Nat. Commun. 14, 93 (2023).
Hill, E. A. et al. The stability of present-day Antarctic grounding strains, half 1: No indication of marine ice sheet instability within the present geometry. Cryosphere 17, 3739–3759 (2023).
Reese, R. et al. The stability of present-day Antarctic grounding strains, half 2: Onset of irreversible retreat of Amundsen Sea glaciers below present local weather on centennial timescales can’t be excluded. Cryosphere 17, 3761–3783 (2023). This paper investigates the dedicated evolution of Antarctic grounding strains below the present-day local weather, discovering irreversible retreat within the Amundsen Sea Embayment is initiated inside centuries however just isn’t but inevitable.
Sun, S. et al. Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). J. Glaciol. 66, 891–904 (2020).
Möller, T. et al. Achieving internet zero greenhouse fuel emissions essential to restrict local weather tipping dangers. Nat. Commun. 15, 6192 (2024).
Seroussi, H. et al. Evolution of the Antarctic Ice Sheet over the following three centuries from an ISMIP6 mannequin ensemble. Earth Future 12, e2024EF004561 (2024). This contribution offers multi-century projections of the Antarctic Ice Sheet evolution utilizing an ensemble of ice sheet fashions, revealing a pointy improve in mass loss and uncertainty from 2100 related to anthropogenic local weather change.
Scambos, T. A., Hulbe, C., Fahnestock, M. & Bohlander, J. The hyperlink between local weather warming and break-up of ice cabinets within the Antarctic Peninsula. J. Glaciol. 46, 516–530 (2000).
Lai, C.-Y. et al. Vulnerability of Antarctica’s ice cabinets to meltwater-driven fracture. Nature 584, 574–578 (2020).
Cook, A. J. & Vaughan, D. G. Overview of areal modifications of the ice cabinets on the Antarctic Peninsula over the previous 50 years. Cryosphere 4, 77–98 (2010).
De Angelis, H. & Skvarca, P. Glacier surge after ice shelf collapse. Science 299, 1560–1562 (2003).
Wuite, J. et al. Evolution of floor velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013. Cryosphere 9, 957–969 (2015).
Rott, H. et al. Changing sample of ice circulate and mass steadiness for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016. Cryosphere 12, 1273–1291 (2018).
Trusel, L. D. et al. Divergent trajectories of Antarctic floor soften below two twenty-first-century local weather situations. Nat. Geosci. 8, 927–932 (2015).
Gilbert, E. & Kittel, C. Surface soften and runoff on Antarctic ice cabinets at 1.5 °C, 2 °C, and 4 °C of future warming. Geophys. Res. Lett. 48, e2020GL091733 (2021).
Dell, R. L., Willis, I. C., Arnold, N. S., Banwell, A. F. & de Roda Husman, S. Substantial contribution of slush to meltwater space throughout Antarctic ice cabinets. Nat. Geosci. 17, 624–630 (2024).
Walker, C. C. et al. Multi-decadal collapse of East Antarctica’s Conger–Glenzer Ice Shelf. Nat. Geosci. 17, 1240–1248 (2024).
Wille, J. D. et al. The extraordinary March 2022 East Antarctica “heat” wave. Part II: Impacts on the Antarctic Ice Sheet. J. Clim. 37, 779–799 (2024).
Hill, E. A., Gudmundsson, G. H. & Chandler, D. M. Ocean warming as a set off for irreversible retreat of the Antarctic ice sheet. Nat. Clim. Change 14, 1165–1171 (2024).
Ben-Yami, M., Skiba, V., Bathiany, S. & Boers, N. Uncertainties in essential slowing down indicators of observation-based fingerprints of the Atlantic Overturning Circulation. Nat. Commun. 14, 8344 (2023).
Smith, R. S. et al. Coupling the U.Ok. Earth System Model to dynamic fashions of the Greenland and Antarctic Ice Sheets. J. Adv. Model. Earth Syst. 13, e2021MS002520 (2021).
Zhou, Q. et al. Evaluating an accelerated forcing method for bettering computational effectivity in coupled ice sheet-ocean modelling. Geosci. Model Dev. Discuss. 17, 8243–8265 (2024).
Miles, B. W. J. & Bingham, R. G. Progressive unanchoring of Antarctic ice cabinets since 1973. Nature 626, 785–791 (2024).
Bradley, A. T. & Hewitt, I. J. Tipping level in ice-sheet grounding-zone melting resulting from ocean water intrusion. Nat. Geosci. 17, 631–637 (2024).
Larour, E. et al. Slowdown in Antarctic mass loss from strong Earth and sea-level feedbacks. Science 364, eaav7908 (2019).
Kachuck, S. B., Martin, D. F., Bassis, J. N. & Price, S. F. Rapid viscoelastic deformation slows marine ice sheet instability at Pine Island Glacier. Geophys. Res. Lett. 47, e2019GL086446 (2020).
Houriez, L. et al. Capturing strong earth and ice sheet interactions: insights from bolstered ridges in Thwaites Glacier. EGUsphere (2025).
Wunderling, N., Donges, J. F., Kurths, J. & Winkelmann, R. Interacting tipping components improve threat of local weather domino results below world warming. Earth Syst. Dynam. 12, 601–619 (2021).
Rosser, J. P., Winkelmann, R. & Wunderling, N. Polar ice sheets are decisive contributors to uncertainty in local weather tipping projections. Commun. Earth Environ. 5, 702 (2024).
Seroussi, H. et al. Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet mannequin ensemble and related uncertainty. Cryosphere 17, 5197–5217 (2023).
Ehrenfeucht, S., Dow, C., McArthur, Ok., Morlighem, M. & McCormack, F. S. Antarctic large subglacial hydrology modeling. Geophys. Res. Lett. 52, e2024GL111386 (2025).
Graham, F. S. et al. A high-resolution artificial mattress elevation grid of the Antarctic continent. Earth Syst. Sci. Data 9, 267–279 (2017).
Paxman, G. J. G., Gasson, E. G. W., Jamieson, S. S. R., Bentley, M. J. & Ferraccioli, F. Long-term improve in Antarctic Ice Sheet vulnerability pushed by mattress topography evolution. Geophys. Res. Lett. 47, e2020GL090003 (2020).
Castleman, B. A., Schlegel, N.-J., Caron, L., Larour, E. & Khazendar, A. Derivation of bedrock topography measurement necessities for the discount of uncertainty in ice-sheet mannequin projections of Thwaites Glacier. Cryosphere 16, 761–778 (2022).
Reading, A. M. et al. Antarctic geothermal warmth circulate and its implications for tectonics and ice sheets. Nat. Rev. Earth. Environ. 3, 814–831 (2022).
Stål, T., Reading, A. M., Halpin, J. A. & Whittaker, J. M. Antarctic geothermal warmth circulate mannequin: Aq1. Geochem. Geophys. Geosyst. 22, e2020GC009428 (2021).
Ivins, E. R., van der Wal, W., Wiens, D. A., Lloyd, A. J. & Caron, L. in The Geochemistry and Geophysics of the Antarctic Mantle (eds A. P. Martin & W. van der Wal) (Geological Society of London, 2023).
Whitehouse, P. L., Gomez, N., King, M. A. & Wiens, D. A. Solid Earth change and the evolution of the Antarctic Ice Sheet. Nat. Commun. 10, 503 (2019).
Lee, J. R. et al. Threat administration priorities for conserving Antarctic biodiversity. PLoS Biol. 20, e3001921 (2022).
Griffiths, H. J., Cummings, V. J., Van de Putte, A., Whittle, R. J. & Waller, C. L. Antarctic benthic ecological change. Nat. Rev. Earth Environ. 5, 645–664 (2024). A complete abstract of abrupt modifications which are threatening cold-adapted species within the benthic communities round Antarctica resulting from warming, ocean acidification and cryospheric modifications.
Banyard, A. C. et al. Detection and unfold of excessive pathogenicity avian influenza virus H5N1 within the Antarctic area. Nat. Commun. 15, 7433 (2024).
Wienecke, B., Lieser, J. L., McInnes, J. C. & Barrington, J. H. S. Fast ice variability in East Antarctica: noticed repercussions for emperor penguins. Endang. Species Res. 55, 1–19 (2024).
Ingels, J. et al. Antarctic ecosystem responses following ice-shelf collapse and iceberg calving: science evaluation and future analysis. WIREs Clim. Change 12, e682 (2021).
Clark, G. F. et al. Light-driven tipping factors in polar ecosystems. Global Change Biol. 19, 3749–3761 (2013).
Sahade, R. et al. Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci. Adv. 1, e1500050 (2015).
Clark, G. F., Stark, J. S., Palmer, A. S., Riddle, M. J. & Johnston, E. L. The roles of sea-ice, gentle and sedimentation in structuring shallow Antarctic benthic communities. PLoS ONE 12, e0168391 (2017).
Dayton, P. Ok. et al. Benthic responses to an Antarctic regime shift: meals particle measurement and recruitment biology. Ecol. Appl. 29, e01823 (2019).
Prather, H. M. et al. Species-specific results of passive warming in an Antarctic moss system. R. Soc. Open Sci. 6, 190744 (2019).
Roland, T. P. et al. Sustained greening of the Antarctic Peninsula noticed from satellites. Nat. Geosci. 17, 1121–1126 (2024).
Bokhorst, S. et al. Greening charges are delicate to methodology and biology; remark to sustained greening of the Antarctic Peninsula noticed from satellites. Preprint at bioRxiv (2024).
Cannone, N., Malfasi, F., Favero-Longo, S. E., Convey, P. & Guglielmin, M. Acceleration of local weather warming and plant dynamics in Antarctica. Curr. Biol. 32, 1599–1606.e1592 (2022).
Robinson, S. A. et al. Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nat. Clim. Change 8, 879–884 (2018).
Lee, J. R. et al. Islands within the ice: potential impacts of habitat transformation on Antarctic biodiversity. Global Change Biol. 28, 5865–5880 (2022).
Bergstrom, D. M. et al. Combating ecosystem collapse from the tropics to the Antarctic. Global Change Biol. 27, 1692–1703 (2021). This perspective underscores the interconnectedness of worldwide ecosystems by demonstrating that ecosystem collapse, from the tropics to the Antarctic, necessitates pressing and complete methods to mitigate cascading abrupt modifications.
Fraser, A. D. et al. Antarctic Landfast Sea Ice: a evaluation of its physics, biogeochemistry and ecology. Rev. Geophys. 61, e2022RG000770 (2023). This evaluation addresses Antarctic land-fast sea ice, highlighting its essential function in regional physics, biogeochemistry and ecology, and emphasizing the potential penalties of its fast decline.
Jenouvrier, S. et al. The name of the emperor penguin: authorized responses to species threatened by local weather change. Global Change Biol. 27, 5008–5029 (2021).
Fretwell, P. T. A 6 yr evaluation of low sea-ice impacts on emperor penguins. Antarct. Sci. 36, 3–5 (2024).
Fretwell, P. T. & Trathan, P. N. Emperors on skinny ice: three years of breeding failure at Halley Bay. Antarct. Sci. 31, 133–138 (2019).
Corso, A. D., Steinberg, D. Ok., Stammerjohn, S. E. & Hilton, E. J. Climate drives long-term change in Antarctic silverfish alongside the western Antarctic Peninsula. Commun. Biol. 5, 104 (2022).
Schmidt, A. E. et al. Sea ice focus decline in an essential Adélie penguin molt space. Proc. Natl Acad. Sci. USA 120, e2306840120 (2023).
Fernández-Barba, M., Belyaev, O., Huertas, I. E. & Navarro, G. Marine heatwaves in a shifting Southern Ocean induce dynamical modifications in major manufacturing. Commun. Earth Environ. 5, 404 (2024).
Boyd, P. W. Physiology and iron modulate numerous responses of diatoms to a warming Southern Ocean. Nat. Clim. Change 9, 148–152 (2019).
Boyd, P. W. et al. The function of biota within the Southern Ocean carbon cycle. Nat. Rev. Earth Environ. 5, 390–408 (2024).
Hancock, A. M., King, C. Ok., Stark, J. S., McMinn, A. & Davidson, A. T. Effects of ocean acidification on Antarctic marine organisms: a meta-analysis. Ecol. Evol. 10, 4495–4514 (2020).
Nissen, C. et al. Severe Twenty first-century ocean acidification in Antarctic Marine Protected Areas. Nat. Commun. 15, 259 (2024).
Hayward, A. et al. Antarctic phytoplankton communities restructure below shifting sea-ice regimes. Nat. Clim. Change, (2025).
Jones, J. M. et al. Assessing latest traits in high-latitude Southern Hemisphere floor local weather. Nat. Clim. Change 6, 917–926 (2016).
Abram, N. J. et al. Early onset of industrial-era warming throughout the oceans and continents. Nature 536, 411–418 (2016).
Armour, Ok. C., Marshall, J., Scott, J. R., Donohoe, A. & Newsom, E. R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9, 549–554 (2016).
Naughten, Ok. A. et al. Two-timescale response of a big Antarctic ice shelf to local weather change. Nat. Commun. 12, 1991 (2021).
Rackow, T. et al. Delayed Antarctic sea-ice decline in high-resolution local weather change simulations. Nat. Commun. 13, 637 (2022).
Beckmann, J. & Winkelmann, R. Effects of maximum soften occasions on ice circulate and sea stage rise of the Greenland Ice Sheet. Cryosphere 17, 3083–3099 (2023).
Kubiszewski, I. et al. Cascading tipping factors of Antarctica and the Southern Ocean. Ambio 54, 642–659 (2025).
Hughes, Ok. A., Convey, P. & Turner, J. Developing resilience to local weather change impacts in Antarctica: an analysis of Antarctic Treaty System protected space coverage. Environ. Sci. Policy 124, 12–22 (2021).
Brooks, C. M. et al. Protect world values of the Southern Ocean ecosystem. Science 378, 477–479 (2022).
Siegert, M. et al. Safeguarding the polar areas from harmful geoengineering: a crticial evaluation of present initiatives and future prospects. Front. Sci. Preprint at (within the press). The urgency of human-caused local weather change and the potential abrupt and irreversibile world impacts of polar modifications is sparking pressures for polar geoengineering options, however this paper assesses that these usually are not possible and should as an alternative be environmentally harmful.
Fankhauser, S. et al. The that means of internet zero and methods to get it proper. Nat. Clim. Change 12, 15–21 (2022).
Forster, P. M. et al. Indicators of Global Climate Change 2023: annual replace of key indicators of the state of the local weather system and human affect. Earth Syst. Sci. Data 16, 2625–2658 (2024).
Matthews, H. D. et al. Opportunities and challenges in utilizing remaining carbon budgets to information local weather coverage. Nat. Geosci. 13, 769–779 (2020).
Moorman, R., Morrison, A. Ok. & McC. Hogg, A. Thermal responses to Antarctic Ice Shelf soften in an eddy-rich world ocean–sea ice mannequin. J. Clim. 33, 6599–6620 (2020).
Fetterer, F., Knowles, Ok., Meier, W. N., Savoie, M. & Windnagel, A. Ok. Sea ice index, model 3 [Data Set]. National Snow and Ice Data Center (2017).
Meier, W. N., Fetterer, F., Windnagel, A. Ok. & Stewart, J. S. NOAA/NSIDC local weather knowledge report of passive microwave sea ice focus. (G02202, model 4). [Data Set]. National Snow and Ice Data Center (2021).
Fogt, R. Antarctic sea ice reconstructions, model 2. Figshare (2021).
Dalaiden, Q. An unprecedented sea ice retreat within the Weddell Sea driving an total lower of the Antarctic sea-ice extent over the twentieth century [Data set]. Zenodo (2023).
Maierhofer, T. J., Raphael, M. N. & Handcock, M. twentieth Century Antarctic sea ice extent anomaly reconstruction by sector. Zenodo (2023).
Murphy, E. J., Clarke, A., Abram, N. J. & Turner, J. Variability of sea-ice within the northern Weddell Sea in the course of the twentieth century. J. Geophys. Res. Oceans 119, 4549–4572 (2014).
Murphy, E., Dunn, M., Turner, J., Clarke, A. & Abram, N. South Orkney Fast-Ice Series (SOFI) (model 2.0) [Data set]. NERC EDS UK Polar Data Centre (2022).
Thomas, E. R. & Abram, N. J. Ice core reconstruction of sea ice change within the Amundsen-Ross Seas since 1702 A.D. Geophys. Res. Lett. 43, 5309–5317 (2016).
Thomas, E. R. Amundsen-Ross sea ice reconstruction based mostly on knowledge from the Ferrigno ice core (F10), Bryan Coast, West Antarctica (model none) [Data set]. Natural Environment Research Council (2017).
Abram, N. J. et al. Ice core proof for a twentieth century decline of sea ice within the Bellingshausen Sea, Antarctica. J. Geophys. Res. Atmos. (2010).
Curran, M. A. J., van Ommen, T. D., Morgan, V. I., Phillips, Ok. L. & Palmer, A. S. Ice core proof for Antarctic Sea Ice decline for the reason that Nineteen Fifties. Science 302, 1203–1206 (2003).
Curran, M. & van Ommen, T. 150 yr MSA sea ice proxy report from Law Dome, Antarctica, (model 1) [Data Set]. Australian Antarctic Data Centre (2011).
Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2020).
DeConto, R. M. et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 593, 83–89 (2021).
Li, L., Aitken, A. R. A., Lindsay, M. D. & Kulessa, B. Sedimentary basins scale back stability of Antarctic ice streams by way of groundwater feedbacks. Nat. Geosci. 15, 645–650 (2022).
Sun, Y., Wang, Y., Zhai, Z. & Zhou, M. Changes within the Antarctic’s summer season floor albedo, noticed by satellite tv for pc since 1982 and related to sea ice anomalies. Remote Sens. 15, 4940 (2023).
van Wessem, J. M., van den Broeke, M. R., Wouters, B. & Lhermitte, S. Variable temperature thresholds of soften pond formation on Antarctic ice cabinets. Nat. Clim. Change 13, 161–166 (2023).
Shepherd, A. et al. Trends in Antarctic Ice Sheet elevation and mass. Geophys. Res. Lett. 46, 8174–8183 (2019).
Rignot, E., Mouginot, J. & Scheuchl, B. Ice circulate of the Antarctic Ice Sheet. Science 333, 1427–1430 (2011).
Ivins, E. R. et al. Antarctic contribution to sea stage rise noticed by GRACE with improved GIA correction. J. Geophys. Res. Solid Earth 118, 3126–3141 (2013).
Schmidt, A. E. & Ballard, G. Significant chick loss after early quick ice breakup at a high-latitude emperor penguin colony. Antarct. Sci. 32, 180–185 (2020).
Fretwell, P. Four unreported emperor penguin colonies found by satellite tv for pc. Antarct. Sci. 36, 277–279 (2024).
Pawlowicz, R. M_Map: a mapping bundle for MATLAB model 1.4 m (Computer Software), (2020).
Greene, C. A. et al. The local weather knowledge toolbox for MATLAB. Geochem. Geophys. Geosyst. 20, 3774–3781 (2019).
Stål, T. & Reading, A. M. A grid for multidimensional and multivariate spatial illustration and knowledge processing. J. Open Res. Softw. 8, 2 (2020).
Abram, N. J., Wolff, E. W. & Curran, M. A. J. A evaluation of sea ice proxy info from polar ice cores. Quat. Sci. Rev. 79, 168–183 (2013).
Cotté, C. & Guinet, C. Historical whaling data reveal main regional retreat of Antarctic sea ice. Deep Sea Res. 54, 243–252 (2007).
de la Mare, W. Ok. Changes in Antarctic sea-ice extent from direct historic observations and whaling data. Clim. Change 92, 461–493 (2009).
This web page was created programmatically, to learn the article in its authentic location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09349-5
and if you wish to take away this text from our website please contact us
