Extraordinarily stripped supernova reveals a silicon and sulfur formation website

This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41586-025-09375-3
and if you wish to take away this text from our website please contact us


  • Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F. Synthesis of the weather in stars. Rev. Mod. Phys. 29, 547–650 (1957).

    ADS 

    Google Scholar
     

  • Kippenhahn, R., Weigert, A. & Weiss, A. Stellar Structure and Evolution (Springer, 2013).

  • Arcones, A. & Thielemann, F.-Okay. Origin of the weather. Astron. Astrophys. Rev. 31, 1 (2023).

    ADS 

    Google Scholar
     

  • Woosley, S. E. & Weaver, T. A. The evolution and explosion of huge stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. Ser. 101, 181 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Woosley, S. E., Heger, A. & Weaver, T. A. The evolution and explosion of huge stars. Rev. Mod. Phys. 74, 1015–1071 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Heger, A., Fryer, C. L., Woosley, S. E., Langer, N. & Hartmann, D. H. How huge single stars finish their life. Astrophys. J. 591, 288–300 (2003).

    ADS 

    Google Scholar
     

  • Woosley, S. E. & Janka, H. T. The physics of core-collapse supernovae. Nat. Phys. 1, 147–154 (2005).

    CAS 

    Google Scholar
     

  • Müller, B. The standing of multi-dimensional core-collapse supernova fashions. Publ. Astron. Soc. Aust. 33, e048 (2016).

    ADS 

    Google Scholar
     

  • Woosley, S. E. Pulsational pair-instability supernovae. Astrophys. J. 836, 244 (2017).

    ADS 

    Google Scholar
     

  • Crowther, P. A. Physical properties of Wolf-Rayet stars. Annu. Rev. Astron. Astrophys. 45, 177–219 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Matheson, T., Filippenko, A. V., Chornock, R., Leonard, D. C. & Li, W. Helium emission traces within the Type Ic supernova 1999CQ. Astron. J. 119, 2303–2310 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Pastorello, A. et al. A large outburst two years earlier than the core-collapse of an enormous star. Nature 447, 829–832 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gal-Yam, A. et al. A WC/WO star exploding inside an increasing carbon–oxygen–neon nebula. Nature 601, 201–204 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Perley, D. A. et al. The Type Icn SN 2021csp: implications for the origins of the quickest supernovae and the fates of Wolf–Rayet stars. Astrophys. J. 927, 180 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Maeda, Okay. & Moriya, T. J. Properties of Type Ibn supernovae: implications for the progenitor evolution and the origin of a inhabitants of fast transients. Astrophys. J. 927, 25 (2022).

    ADS 

    Google Scholar
     

  • Bellm, E. C. et al. The Zwicky Transient Facility: system overview, efficiency, and first outcomes. Publ. Astron. Soc. Pac. 131, 018002 (2019).

    ADS 

    Google Scholar
     

  • Graham, M. J. et al. The Zwicky Transient Facility: science targets. Publ. Astron. Soc. Pac. 131, 078001 (2019).

    ADS 

    Google Scholar
     

  • Muñoz-Arancibia, A. et al. ALeRCE/ZTF Transient Discovery Report for 2021-09-07. Report No. 2021-3075 (Transient Name Server, 2021).

  • Bruch, R. J. et al. The prevalence and affect of circumstellar materials round hydrogen-rich supernova progenitors. Astrophys. J. 952, 119 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Pastorello, A. et al. Massive stars exploding in a He-rich circumstellar medium – I. Type Ibn (SN 2006jc-like) occasions. Mon. Not. R. Astron. Soc. 389, 113–130 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Jacobson-Galán, W. V. et al. Final moments. II. Observational properties and bodily modeling of circumstellar-material-interacting Type II supernovae. Astrophys. J. 970, 189 (2024).


    Google Scholar
     

  • Planck Collaboration. Planck 2018 outcomes. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).


    Google Scholar
     

  • Liu, Y.-Q., Modjaz, M., Bianco, F. B. & Graur, O. Analyzing the most important spectroscopic knowledge set of stripped supernovae to enhance their identifications and constrain their progenitors. Astrophys. J. 827, 90 (2016).

    ADS 

    Google Scholar
     

  • Lunnan, R. et al. PS1-14bj: a hydrogen-poor superluminous supernova with a protracted rise and gradual decay. Astrophys. J. 831, 144 (2016).

    ADS 

    Google Scholar
     

  • Dessart, L., Hillier, D. J. & Kuncarayakti, H. Helium stars exploding in circumstellar materials and the origin of Type Ibn supernovae. Astron. Astrophys. 658, A130 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Filippenko, A. V. Optical spectra of supernovae. Annu. Rev. Astron. Astrophys. 35, 309–355 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Gal-Yam, A. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 195–237 (Springer, 2017).

  • Gal-Yam, A., Yaron, O. & Schulze, S. Introducing a brand new supernova classification sort: SN Ien. Transient Name Server AstroNote 2024-239 (2024).

  • Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Takei, Y., Tsuna, D., Kuriyama, N., Ko, T. & Shigeyama, T. CHIPS: Complete History of Interaction-powered Supernovae. Astrophys. J. 929, 177 (2022).

    ADS 

    Google Scholar
     

  • Takei, Y., Tsuna, D., Ko, T. & Shigeyama, T. Simulating hydrogen-poor interaction-powered supernovae with CHIPS. Astrophys. J. 961, 67 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Fowler, W. A. & Hoyle, F. Neutrino processes and pair formation in huge stars and supernovae. Astrophys. J. Suppl. Ser. 9, 201 (1964).

    ADS 
    CAS 

    Google Scholar
     

  • Barkat, Z., Rakavy, G. & Sack, N. Dynamics of supernova explosion ensuing from pair formation. Phys. Rev. Lett. 18, 379–381 (1967).

    ADS 
    CAS 

    Google Scholar
     

  • Rakavy, G., Shaviv, G. & Zinamon, Z. Carbon and oxygen burning stars and pre-supernova fashions. Astrophys. J. 150, 131 (1967).

    ADS 
    CAS 

    Google Scholar
     

  • Leung, S.-C., Nomoto, Okay. & Blinnikov, S. Pulsational pair-instability supernovae. I. Pre-collapse evolution and pulsational mass ejection. Astrophys. J. 887, 72 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Marchant, P. et al. Pulsational pair-instability supernovae in very shut binaries. Astrophys. J. 882, 36 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Sana, H. et al. Binary interplay dominates the evolution of huge stars. Science 337, 444–446 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gal-Yam, A. et al. A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature 509, 471–474 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Groh, J. H. Early-time spectra of supernovae and their precursor winds. The luminous blue variable/yellow hypergiant progenitor of SN 2013cu. Astron. Astrophys. 572, L11 (2014).

    ADS 

    Google Scholar
     

  • Yaron, O. et al. Confined dense circumstellar materials surrounding an everyday Type II supernova. Nat. Phys. 13, 510–517 (2017).

    CAS 

    Google Scholar
     

  • Fremling, C. et al. The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic classification and the redshift completeness of native galaxy catalogs. Astrophys. J. 895, 32 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Perley, D. A. et al. The Zwicky Transient Facility Bright Transient Survey. II. A public statistical pattern for exploring supernova demographics. Astrophys. J. 904, 35 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Li, W. et al. Nearby supernova charges from the Lick Observatory Supernova Search – II. The noticed luminosity features and fractions of supernovae in an entire pattern. Mon. Not. R. Astron. Soc. 412, 1441–1472 (2011).

    ADS 

    Google Scholar
     

  • Tonry, J. L. An early warning system for asteroid influence. Publ. Astron. Soc. Pac. 123, 58 (2011).

    ADS 

    Google Scholar
     

  • Smith, Okay. W. et al. Design and operation of the ATLAS Transient Science Server. Publ. Astron. Soc. Pac. 132, 085002 (2020).

    ADS 

    Google Scholar
     

  • Jones, D. O. et al. The Young Supernova Experiment: survey targets, overview, and operations. Astrophys. J. 908, 143 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Steeghs, D. et al. The Gravitational-wave Optical Transient Observer (GOTO): prototype efficiency and prospects for transient science. Mon. Not. R. Astron. Soc. 511, 2405–2422 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Ofek, E. O. et al. The Large Array Survey Telescope—system overview and performances. Publ. Astron. Soc. Pac. 135, 065001 (2023).

    ADS 

    Google Scholar
     

  • Groot, P. J. et al. The BlackGEM telescope array. I. Overview. Publ. Astron. Soc. Pac. 136, 115003 (2024).


    Google Scholar
     

  • LSST Science Collaborations et al. LSST Science Book, Version 2.0. Preprint at (2009).

  • Hogg, D. W., Baldry, I. Okay., Blanton, M. R. & Eisenstein, D. J. The Okay correction. Preprint at (2002).

  • Bruch, R. J. et al. A big fraction of hydrogen-rich supernova progenitors expertise elevated mass loss shortly previous to explosion. Astrophys. J. 912, 46 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Miller, A. A. et al. ZTF early observations of Type Ia supernovae. II. First gentle, the preliminary rise, and time to achieve most brightness. Astrophys. J. 902, 47 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Maguire, Okay. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 293–316 (Springer, 2017).

  • Arcavi, I. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 239–276 (Springer, 2017).

  • Gezari, S. Tidal disruption occasions. Annu. Rev. Astron. Astrophys. 59, 21–58 (2021).

    ADS 

    Google Scholar
     

  • Bond, H. E. et al. The 2008 luminous optical transient within the close by galaxy NGC 300. Astrophys. J. Lett. 695, L154–L158 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Ho, A. Y. Q. et al. A seek for extragalactic quick blue optical transients in ZTF and the speed of AT2018cow-like transients. Astrophys. J. 949, 120 (2023).

    ADS 

    Google Scholar
     

  • De, Okay. et al. The Zwicky Transient Facility census of the native universe. I. Systematic seek for calcium-rich hole transients reveals three associated spectroscopic subclasses. Astrophys. J. 905, 58 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Pastorello, A. et al. Luminous crimson novae: stellar mergers or large eruptions? Astron. Astrophys. 630, A75 (2019).

    CAS 

    Google Scholar
     

  • Liu, F. T., Ting, Okay. M. & Zhou, Z.-H. Isolation forest. In Proc. 2008 Eighth IEEE International Conference on Data Mining 413–422 (IEEE, 2008).

  • Pedregosa, F. et al. Scikit-learn: machine studying in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 

    Google Scholar
     

  • Nicholl, M. et al. SN 2015bn: an in depth multi-wavelength view of a close-by superluminous supernova. Astrophys. J. 826, 39 (2016).

    ADS 

    Google Scholar
     

  • Schulze, S. et al. 1100 days within the lifetime of the supernova 2018ibb. The finest pair-instability supernova candidate, thus far. Astron. Astrophys. 683, A223 (2024).

    CAS 

    Google Scholar
     

  • Kool, E. C. et al. SN 2020bqj: a Type Ibn supernova with a long-lasting peak plateau. Astron. Astrophys. 652, A136 (2021).

    CAS 

    Google Scholar
     

  • Ofek, E. O. et al. SN 2010jl: optical to laborious X-ray observations reveal an explosion embedded in a ten photo voltaic mass cocoon. Astrophys. J. 781, 42 (2014).

    ADS 

    Google Scholar
     

  • Soumagnac, M. T. et al. Early ultraviolet observations of Type IIn supernovae constrain the asphericity of their circumstellar materials. Astrophys. J. 899, 51 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Matzner, C. D. & McKee, C. F. The expulsion of stellar envelopes in core-collapse supernovae. Astrophys. J. 510, 379–403 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Moriya, T. J. et al. An analytic bolometric gentle curve mannequin of interaction-powered supernovae and its software to Type IIn supernovae. Mon. Not. R. Astron. Soc. 435, 1520–1535 (2013).

    ADS 

    Google Scholar
     

  • Owocki, S. P., Hirai, R., Podsiadlowski, P. & Schneider, F. R. N. Hydrodynamical simulations and similarity relations for eruptive mass-loss from huge stars. Mon. Not. R. Astron. Soc. 485, 988–1000 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Tsuna, D., Takei, Y., Kuriyama, N. & Shigeyama, T. An analytical density profile of dense circumstellar medium in Type II supernovae. Publ. Astron. Soc. Jpn 73, 1128–1136 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Tsuna, D. & Takei, Y. Detached and steady circumstellar matter in Type Ibc supernovae from mass eruption. Publ. Astron. Soc. Jpn 75, L19–L25 (2023).

    ADS 

    Google Scholar
     

  • Magee, N. H. et al. Atomic construction calculations and new LOS Alamos astrophysical opacities. In Astrophysical Applications of Powerful New Databases, ASP Conference Series, Vol. 78 (eds Adelman, S. J. & Wiese, W. L.) 51 (Astronomical Society of the Pacific, 1995).

  • Suzuki, A., Moriya, T. J. & Takiwaki, T. Supernova ejecta interacting with a circumstellar disk. I. Two-dimensional radiation-hydrodynamic simulations. Astrophys. J. 887, 249 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Gal-Yam, A. A easy evaluation of Type I superluminous supernova peak spectra: composition, enlargement velocities, and dynamics. Astrophys. J. 882, 102 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Kramida, A., Ralchenko, Y., Reader, J. & NIST ASD Team. NIST Atomic Spectra Database (model 5.5.6). National Institute of Standards and Technology (2018).

  • Irani, I. et al. The early ultraviolet gentle curves of Type II supernovae and the radii of their progenitor stars. Astrophys. J. 970, 96 (2024).

    CAS 

    Google Scholar
     

  • Anupama, G. C. et al. Optical photometry and spectroscopy of the Type Ibn supernova SN 2006jc till the onset of mud formation. Mon. Not. R. Astron. Soc. 392, 894–903 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Foley, R. J. et al. SN 2006jc: a Wolf-Rayet star exploding in a dense He-rich circumstellar medium. Astrophys. J. Lett. 657, L105–L108 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Gal-Yam, A. The most luminous supernovae. Annu. Rev. Astron. Astrophys. 57, 305–333 (2019).

    ADS 

    Google Scholar
     

  • Kuncarayakti, H. et al. Late-time H/He-poor circumstellar interplay within the Type Ic supernova SN 2021ocs: an uncovered oxygen–magnesium layer and excessive stripping of the progenitor. Astrophys. J. Lett. 941, L32 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Dessart, L., Hillier, D. J., Sukhbold, T., Woosley, S. E. & Janka, H. T. Nebular section properties of supernova Ibc from He-star explosions. Astron. Astrophys. 656, A61 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Vink, J. S. Theory and diagnostics of sizzling star mass loss. Annu. Rev. Astron. Astrophys. 60, 203–246 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Smith, N. Mass loss: its impact on the evolution and destiny of high-mass stars. Annu. Rev. Astron. Astrophys. 52, 487–528 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Humphreys, R. M. & Davidson, Okay. The luminous blue variables: astrophysical geysers. Publ. Astron. Soc. Pac. 106, 1025 (1994).

    ADS 

    Google Scholar
     

  • Podsiadlowski, P., Joss, P. C. & Hsu, J. J. L. Presupernova evolution in huge interacting binaries. Astrophys. J. 391, 246 (1992).

    ADS 

    Google Scholar
     

  • Marchant, P. & Bodensteiner, J. The evolution of huge binary stars. Annu. Rev. Astron. Astrophys. 62, 21–61 (2024).

    CAS 

    Google Scholar
     

  • Heger, A. & Woosley, S. E. The nucleosynthetic signature of Population III. Astrophys. J. 567, 532–543 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Umeda, H. & Nomoto, Okay. Nucleosynthesis of zinc and iron peak parts in Population III Type II supernovae: comparability with abundances of very steel poor halo stars. Astrophys. J. 565, 385–404 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Kasen, D., Woosley, S. E. & Heger, A. Pair instability supernovae: gentle curves, spectra, and shock breakout. Astrophys. J. 734, 102 (2011).

    ADS 

    Google Scholar
     

  • Kozyreva, A. et al. Fast evolving pair-instability supernova fashions: evolution, explosion, gentle curves. Mon. Not. R. Astron. Soc. 464, 2854–2865 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Gilmer, M. S., Kozyreva, A., Hirschi, R., Fröhlich, C. & Yusof, N. Pair-instability supernova simulations: progenitor evolution, explosion, and light-weight curves. Astrophys. J. 846, 100 (2017).

    ADS 

    Google Scholar
     

  • Woosley, S. E., Blinnikov, S. & Heger, A. Pulsational pair instability as a proof for probably the most luminous supernovae. Nature 450, 390–392 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshida, T., Umeda, H., Maeda, Okay. & Ishii, T. Mass ejection by pulsational pair instability in very huge stars and implications for luminous supernovae. Mon. Not. R. Astron. Soc. 457, 351–361 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Farmer, R., Renzo, M., de Mink, S. E., Fishbach, M. & Justham, S. Constraints from gravitational-wave detections of binary black gap mergers on the 12C(α, γ)16O charge. Astrophys. J. Lett. 902, L36 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Woosley, S. E. & Heger, A. The pair-instability mass hole for black holes. Astrophys. J. Lett. 912, L31 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Farag, E., Renzo, M., Farmer, R., Chidester, M. T. & Timmes, F. X. Resolving the height of the black gap mass spectrum. Astrophys. J. 937, 112 (2022).

    ADS 

    Google Scholar
     

  • Chen, Okay.-J., Woosley, S. E., Heger, A., Almgren, A. & Whalen, D. J. Two-dimensional simulations of pulsational pair-instability supernovae. Astrophys. J. 792, 28 (2014).

    ADS 

    Google Scholar
     

  • Chen, Okay.-J., Whalen, D. J., Woosley, S. E. & Zhang, W. Multidimensional radiation hydrodynamics simulations of pulsational pair-instability supernovae. Astrophys. J. 955, 39 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Chieffi, A. & Limongi, M. Pre-supernova evolution of rotating photo voltaic metallicity stars within the mass vary 13–120 M and their explosive yields. Astrophys. J. 764, 21 (2013).

    ADS 

    Google Scholar
     

  • Woosley, S. E. & Heger, A. The outstanding deaths of 9–11 photo voltaic mass stars. Astrophys. J. 810, 34 (2015).

    ADS 

    Google Scholar
     

  • Woosley, S. E. The evolution of huge helium stars, together with mass loss. Astrophys. J. 878, 49 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Woosley, S. E. & Bloom, J. S. The supernova gamma-ray burst connection. Annu. Rev. Astron. Astrophys. 44, 507–556 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Hjorth, J. & Bloom, J. S. in Gamma-Ray Bursts (eds Kouveliotou, C. et al.) Ch. 9, 169–190 (Cambridge Univ. Press, 2012).

  • Pian, E. et al. An optical supernova related to the X-ray flash XRF 060218. Nature 442, 1011–1013 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Starling, R. L. C. et al. Discovery of the close by lengthy, mushy GRB 100316D with an related supernova. Mon. Not. R. Astron. Soc. 411, 2792–2803 (2011).

    ADS 

    Google Scholar
     

  • Piran, T. The physics of gamma-ray bursts. Rev. Mod. Phys. 76, 1143–1210 (2004).

    ADS 

    Google Scholar
     

  • Khokhlov, A. M. & Ergma, E. V. Peculiar Type I supernovae – explosive helium burning in a low-mass accreting white dwarf. Sov. Astron. Lett. 12, 152–154 (1986).

    ADS 

    Google Scholar
     

  • Waldman, R. et al. Helium shell detonations on low-mass white dwarfs as a potential rationalization for SN 2005E. Astrophys. J. 738, 21 (2011).

    ADS 

    Google Scholar
     

  • Gkini, A. et al. Eruptive mass loss lower than a 12 months earlier than the explosion of superluminous supernovae. I. The circumstances of SN 2020xga and SN 2022xgc. Astron. Astrophys. 694, A292 (2025).

    CAS 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
    https://www.nature.com/articles/s41586-025-09375-3
    and if you wish to take away this text from our website please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *