Space weathering results in Bennu asteroid samples

This web page was created programmatically, to learn the article in its unique location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41561-025-01745-w
and if you wish to take away this text from our website please contact us


  • Lauretta, D. S. et al. Asteroid (101955) Bennu within the laboratory: properties of the pattern collected by OSIRIS-REx. Meteorit. Planet. Sci. (2024).

    Article 

    Google Scholar
     

  • DellaGiustina, D. N. et al. Variations in shade and reflectance on the floor of asteroid (101955) Bennu. Science 370, eabc3660 (2020).

    CAS 

    Google Scholar
     

  • Bierhaus, E. B. et al. The OSIRIS-REx spacecraft and the Touch-and-Go Sample Acquisition Mechanism (TAGSAM). Space Sci. Rev. 214, 107 (2018).


    Google Scholar
     

  • Lauretta, D. S. et al. Spacecraft pattern collections and subsurface excavation of asteroid (101955) Bennu. Science 377, 285–291 (2022).

    CAS 

    Google Scholar
     

  • Zega, T. J. et al. Mineralogical proof for hydrothermal alteration of Bennu samples. Nat. Geosci. (2025).

  • Thompson, M. S., Loeffler, M. J., Morris, R. V., Keller, L. P. & Christoffersen, R. Spectral and chemical results of simulated house weathering of the Murchison CM2 carbonaceous chondrite. Icarus 319, 499–511 (2019).

    CAS 

    Google Scholar
     

  • Hamilton, V. E. et al. Evidence for widespread hydrated minerals on asteroid (101955) Bennu. Nat. Astron. (2019).

    Article 

    Google Scholar
     

  • Noguchi, T. et al. Incipient house weathering noticed on the floor of Itokawa mud particles. Science 333, 1121–1125 (2011).

    CAS 

    Google Scholar
     

  • Laczniak, D. L. et al. Characterizing the spectral, microstructural, and chemical results of photo voltaic wind irradiation on the Murchison carbonaceous chondrite via coordinated analyses. Icarus 364, 114479 (2021).

    CAS 

    Google Scholar
     

  • Laczniak, D. L. et al. Investigating the position of incident ion flux in photo voltaic wind house weathering of carbon-rich asteroidal regolith by way of H+ and He+ irradiation of the Murchison meteorite. Icarus 410, 115883 (2024).

    CAS 

    Google Scholar
     

  • Glavin, D. P. et al. Abundant ammonia and nitrogen-rich soluble natural matter in samples from asteroid (101955) Bennu. Nat. Astron. 9, 199–210 (2025).


    Google Scholar
     

  • Matsumoto, T. et al. Influx of nitrogen-rich materials from the outer Solar System indicated by iron nitride in Ryugu samples. Nat. Astron. 8, 207–215 (2024).


    Google Scholar
     

  • Matsumoto, T., Harries, D., Langenhorst, F., Miyake, A. & Noguchi, T. Iron whiskers on asteroid Itokawa point out sulfide destruction by house weathering. Nat. Commun. 11, 1117 (2020).

    CAS 

    Google Scholar
     

  • Matsumoto, T. et al. Space weathering of iron sulfides within the lunar floor atmosphere. Geochim. Cosmochim. Acta 299, 69–84 (2021).

    CAS 

    Google Scholar
     

  • Ziegler, J. F., Ziegler, M. D. & Biersack, J. P. SRIM—the stopping and vary of ions in matter. Nucl. Instrum. Methods Phys. Res. B 268, 1818–1823 (2010).

  • Noguchi, T. et al. A dehydrated space-weathered pores and skin cloaking the hydrated inside of Ryugu. Nat. Astron. 7, 170–181 (2023).


    Google Scholar
     

  • Keller, L. P. & Berger, E. L. A transmission electron microscope research of Itokawa regolith grains. Earth Planets Space 66, 71–80 (2014).


    Google Scholar
     

  • Keller, L. P., Berger, E. L., Zhang, S. & Christoffersen, R. Solar energetic particle tracks in lunar samples: a transmission electron microscope calibration and implications for lunar house weathering. Meteorit. Planet. Sci. 56, 1685–1707 (2021).

    CAS 

    Google Scholar
     

  • Morrison, D. A. & Clanton, U. S. Properties of microcraters and cosmic mud of lower than 1000 Å dimensions. In Proc. Tenth Lunar and Planetary Science Conference Volume 2 (ed Merrill, R. B.) 1649–1663 (Pergamon Press, 1979).

  • Okazaki, R. et al. Noble gases and nitrogen in samples of asteroid Ryugu file its risky sources and up to date floor evolution. Science (2022).

    Article 

    Google Scholar
     

  • Barnes, J. et al. Origin of supplies accreted by Bennu’s mother or father asteroid. Nat. Astron. (within the press).

  • Nishiizumi, Ok. et al. Absolute calibration of 10Be AMS requirements. Nucl. Instrum. Methods Phys. Res. B258, 403–413 (2007).


    Google Scholar
     

  • Nishiizumi, Ok. Preparation of 26Al AMS requirements. Nucl. Instrum. Methods Phys. Res. B223-224, 388–392 (2004).


    Google Scholar
     

  • Sharma, P. et al. Development of 36Cl requirements for AMS. Nucl. Instrum. Methods Phys. Res. B52, 410–415 (1990).

    CAS 

    Google Scholar
     

  • Leya, I., Neumann, S., Wieler, R. & Michel, R. The manufacturing of cosmogenic nuclides by galactic cosmic ray particles for 2π publicity geometries. Meteorit. Planet. Sci. 36, 1547–1561 (2001).

    CAS 

    Google Scholar
     

  • Barnouin, O. S. et al. Geologic context of the OSIRIS-REx pattern website from high-resolution topography and imaging. Planet. Sci. J. 3, 75 (2022).


    Google Scholar
     

  • Walsh, Ok. W. et al. Craters, boulders and regolith of (101955) Bennu indicative of an outdated and dynamic floor. Nat. Geosci. 12, 242–246 (2019).

    CAS 

    Google Scholar
     

  • Bottke, W. F. et al. Meteoroid impacts as a supply of Bennu’s particle ejection occasions. JGR-Planets 125, e2019JE006282 (2020).

    CAS 

    Google Scholar
     

  • Jawin, E. R., et al. Boulder variety within the Nightingale area of asteroid (101955) Bennu and predictions for bodily properties of the OSIRIS-REx pattern. J. Geophys. Res. Planets (2023).

  • Bierhaus, E. B. et al. Crater inhabitants on asteroid (101955) Bennu signifies influence armouring and a younger floor. Nat. Geosci. 15, 440–446 (2022).

    CAS 

    Google Scholar
     

  • Yumoto, Ok., et al. Comparison of optical spectra between asteroids Ryugu and Bennu: II. high-precision evaluation for house weathering traits. Icarus (2024).

  • McCoy, T. J. et al. An historic evaporite sequence in Bennu samples associated to trendy brines on Ceres, Europa, and Enceladus. Nature 637, 1072–1077 (2024).


    Google Scholar
     

  • Pilorget, C. et al. Phosphorus-rich grains in Ryugu samples with main biochemical potential.Nat. Astron. 81, 1529–1535 (2024).


    Google Scholar
     

  • Thompson, M. S. et al. The impact of progressive house weathering on the natural and inorganic elements of a carbonaceous chondrite. Icarus 346, 113775 (2020).

    CAS 

    Google Scholar
     

  • Sasaki, S., Nakamura, Ok., Hamabe, Y., Kurahashi, E. & Hiroi, T. Production of iron nanoparticles by laser irradiation in a simulation of lunar-like house weathering. Nature 410, 555–557 (2001).

    CAS 

    Google Scholar
     

  • Vernazza, P., Binzel, R. P., Rossi, A., Fulchignoni, M. & Birlan, M. Solar wind because the origin of fast reddening of asteroid surfaces. Nature 458, 993–995 (2009).

    CAS 

    Google Scholar
     

  • Noguchi, T. et al. Space weathered rims discovered on the surfaces of the Itokawa mud particles. Meteorit. Planet. Sci. 49, 188–214 (2014).

    CAS 

    Google Scholar
     

  • Rozitis, B. et al. Asteroid (101955) Bennu’s weak boulders and thermally anomalous equator. Sci. Adv. 6, eabc3699 (2020).


    Google Scholar
     

  • Kieffer, S. W. & Simonds, C. H. The position of volatiles and lithology within the influence cratering course of. Rev. Geophys. Space Phys. 18, 143–181 (1980).

    CAS 

    Google Scholar
     

  • Takaki, N. et al. Resurfacing processes constrained by crater distribution on Ryugu. Icarus 377, 114911 (2022).


    Google Scholar
     

  • Riebe, M. E. I. et al. Cosmic-ray publicity ages of six chondritic Almahata Sitta fragments. Meteorit. Planet. Sci. 52, 2353–2374 (2017).

    CAS 

    Google Scholar
     

  • Sharma, P. et al. PRIME lab AMS efficiency, upgrades and analysis purposes. Nucl. Instrum. Methods Phys. Res. B172, 112–123 (2000).


    Google Scholar
     

  • He, H.-Q., Zhou, G. & Wan, W. Propagation of photo voltaic energetic particles in three-dimensional interplanetary magnetic fields: radial dependence of peak intensities. Astrophys. J. 842, 71 (2017).


    Google Scholar
     


  • This web page was created programmatically, to learn the article in its unique location you possibly can go to the hyperlink bellow:
    https://www.nature.com/articles/s41561-025-01745-w
    and if you wish to take away this text from our website please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *