Current and future methane emissions from boreal-Arctic wetlands and lakes

This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41558-025-02413-y
and if you wish to take away this text from our web site please contact us


  • Zhang, Z. et al. Development of the worldwide dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M). Earth Syst. Sci. Data 13, 2001–2023 (2021).


    Google Scholar
     

  • Feng, M., Sexton, J. O., Channan, S. & Townshend, J. R. A world, high-resolution (30-m) inland water physique dataset for 2000: first outcomes of a topographic–spectral classification algorithm. Int. J. Digital Earth 9, 113–133 (2016).


    Google Scholar
     

  • Saunois, M. et al. The international methane finances 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).


    Google Scholar
     

  • Svensson, B. H., Veum, A. Okay. & Kjelvik, S. in Fennoscandian Tundra Ecosystems: Part 1 Plants and Microorganisms (ed. Wielgolaski, F. E.) 279–286 (Springer, 1975).

  • Kuhn, M. et al. BAWLD-CH 4: a complete dataset of methane fluxes from boreal and Arctic ecosystems. Earth Syst. Sci. Data 13, 5151–5189 (2021).


    Google Scholar
     

  • Thornton, B. F., Wik, M. & Crill, P. M. Double‐counting challenges the accuracy of excessive‐latitude methane inventories. Geophys. Res. Lett. 43, 12,569–12,577 (2016).

    CAS 

    Google Scholar
     

  • McNicol, G. et al. Upscaling wetland methane emissions from the FLUXNET‐CH4 eddy covariance community (UpCH4 v1.0): mannequin growth, community evaluation, and finances comparability. AGU Adv. 4, e2023AV000956 (2023).


    Google Scholar
     

  • Watts, J. D., Kimball, J. S., Bartsch, A. & McDonald, Okay. C. Surface water inundation within the boreal-Arctic: potential impacts on regional methane emissions. Environ. Res. Lett. 9, 075001 (2014).


    Google Scholar
     

  • Johnson, M. S., Matthews, E., Du, J., Genovese, V. & Bastviken, D. Methane emission from international lakes: new spatiotemporal information and observation-driven modeling of methane dynamics signifies decrease emissions. J. Geophys. Res. Biogeosci. 127, e2022JG006793 (2022).

    CAS 

    Google Scholar
     

  • Walter Anthony, Okay. M. et al. Estimating methane emissions from northern lakes utilizing ice-bubble surveys. Limnol. Oceanogr. Methods 8, 592–609 (2010).


    Google Scholar
     

  • Oh, Y. et al. CarbonTracker CH4 2023 (NOAA Global Monitoring Laboratory, 2023); https://doi.org/10.25925/40JT-QD67

  • Thompson, R. L. et al. Methane fluxes within the excessive northern latitudes for 2005–2013 estimated utilizing a Bayesian atmospheric inversion. Atmos. Chem. Phys. 17, 3553–3572 (2017).

    CAS 

    Google Scholar
     

  • Webb, E. E. et al. Permafrost thaw drives floor water decline throughout lake-rich areas of the Arctic. Nat. Clim. Change 12, 841–846 (2022).

    CAS 

    Google Scholar
     

  • Turetsky, M. R. et al. Carbon launch by abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    CAS 

    Google Scholar
     

  • Olefeldt, D. et al. The Boreal-Arctic Wetland and Lake Dataset (BAWLD). Earth Syst. Sci. Data 13, 5127–5149 (2021).


    Google Scholar
     

  • Treat, C. C., Bloom, A. A. & Marushchak, M. E. Nongrowing season methane emissions: a significant factor of annual emissions throughout northern ecosystems. Glob. Chang. Biol. 24, 3331–3343 (2018).


    Google Scholar
     

  • Sieczko, A. Okay. et al. Diel variability of methane emissions from lakes. Proc. Natl Acad. Sci. USA 117, 21488–21494 (2020).

    CAS 

    Google Scholar
     

  • Wik, M., Varner, R. Okay., Anthony, Okay. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are important elements of methane launch. Nat. Geosci. 9, 99–105 (2016).

    CAS 

    Google Scholar
     

  • Vonk, J. E. et al. High biolability of historic permafrost carbon upon thaw. Geophys. Res. Lett. 40, 2689–2693 (2013).

    CAS 

    Google Scholar
     

  • Walter Anthony, Okay. et al. Twenty first-Century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).


    Google Scholar
     

  • Bartsch, A. et al. Circumarctic land cowl variety contemplating wetness gradients. Hydrol. Earth Syst. Sci. 28, 2421–2481 (2024).

    CAS 

    Google Scholar
     

  • Kyzivat, E. D. & Smith, L. C. Contemporary and historic detection of small lakes utilizing tremendous decision Landsat imagery: promise and peril. GISci. Remote Sens. (2023).

  • Rocher-Ros, G. et al. Global methane emissions from rivers and streams. Nature 621, 530–535 (2023).

    CAS 

    Google Scholar
     

  • Voigt, C. et al. Arctic soil methane sink will increase with drier situations and better ecosystem respiration. Nat. Clim. Change 13, 1095–1104 (2023).

    CAS 

    Google Scholar
     

  • Lee, J. et al. Soil natural carbon is a key determinant of CH4 sink in international forest soils. Nat. Commun. 14, 3110 (2023).

    CAS 

    Google Scholar
     

  • Matthews, E., Johnson, M. S., Genovese, V., Du, J. & Bastviken, D. Methane emission from excessive latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions. Sci. Rep. 10, 12465 (2020).

    CAS 

    Google Scholar
     

  • Chasmer, L. & Hopkinson, C. Threshold lack of discontinuous permafrost and panorama evolution. Glob. Chang. Biol. 23, 2672–2686 (2017).


    Google Scholar
     

  • Mamet, S. D., Chun, Okay. P., Kershaw, G. G. L., Loranty, M. M. & Peter Kershaw, G. Recent will increase in permafrost thaw charges and areal lack of palsas within the western Northwest Territories, Canada: non-linear palsa degradation. Permafr. Periglac. Process. 28, 619–633 (2017).


    Google Scholar
     

  • Borge, A. F., Westermann, S., Solheim, I. & Etzelmüller, B. Strong degradation of palsas and peat plateaus in northern Norway over the past 60 years. Cryosphere 11, 1–16 (2017).


    Google Scholar
     

  • Bao, T., Jia, G. & Xu, X. Weakening greenhouse gasoline sink of pristine wetlands underneath warming. Nat. Clim. Change 13, 462–469 (2023).

    CAS 

    Google Scholar
     

  • Dorrepaal, E., Aerts, R., Cornelissen, J. H. C., Callaghan, T. V. & Van Logtestijn, R. S. P. Summer warming and elevated winter snow cowl have an effect on Sphagnum fuscum development, construction and manufacturing in a sub‐Arctic lavatory. Glob. Chang. Biol. 10, 93–104 (2004).


    Google Scholar
     

  • Norby, R. J., Childs, J., Hanson, P. J. & Warren, J. M. Rapid lack of an ecosystem engineer: Sphagnum decline in an experimentally warmed lavatory. Ecol. Evol. 9, 12571–12585 (2019).


    Google Scholar
     

  • Lupascu, M. et al. High Arctic wetting reduces permafrost carbon feedbacks to local weather warming. Nat. Clim. Change 4, 51–55 (2014).

    CAS 

    Google Scholar
     

  • de Vrese, P. et al. Sensitivity of Arctic CH4 emissions to panorama wetness diminished by atmospheric feedbacks. Nat. Clim. Change 13, 832–839 (2023).


    Google Scholar
     

  • Zhang, Z. et al. Emerging position of wetland methane emissions in driving Twenty first century local weather change. Proc. Natl. Acad. Sci. USA 114, 9647–9652 (2017).

    CAS 

    Google Scholar
     

  • Yuan, Okay. et al. Arctic–boreal wetland methane emissions modulated by warming and vegetation exercise. Nat. Clim. Change 14, 282–288 (2024).

  • Bartsch, A. et al. Circumarctic land-cover variety contemplating wetness gradients. EGUsphere 2023, 2421–2481 (2023).


    Google Scholar
     

  • Oh, Y. et al. Reduced internet methane emissions resulting from microbial methane oxidation in a hotter Arctic. Nat. Clim. Chang. 10, 317–321 (2020).

    CAS 

    Google Scholar
     

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects fashions utilizing lme4. J. Stat. Softw. 67, 1–48 (2015).


    Google Scholar
     

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial decision local weather surfaces for international land areas. Int. J. Climatol. 37, 4302–4315 (2017).


    Google Scholar
     

  • Olefeldt, D., Turetsky, M. R., Crill, P. M. & McGuire, A. D. Environmental and bodily controls on northern terrestrial methane emissions throughout permafrost zones. Glob. Change Biol. 19, 589–603 (2013).


    Google Scholar
     

  • Turetsky, M. R. et al. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob. Change Biol. 20, 2183–2197 (2014).


    Google Scholar
     

  • Weyhenmeyer, G. A. et al. Large geographical variations within the sensitivity of ice-covered lakes and rivers within the Northern Hemisphere to temperature adjustments. Glob. Change Biol. 17, 268–275 (2011).


    Google Scholar
     

  • DelSontro, T., Boutet, L., St-Pierre, A., del Giorgio, P. A. & Prairie, Y. T. Methane ebullition and diffusion from northern ponds and lakes regulated by the interplay between temperature and system productiveness. Limnol. Oceanogr. 61, S62–S77 (2016).


    Google Scholar
     

  • Stanley, E. H. et al. GRiMeDB: the worldwide river database of methane concentrations and fluxes. Earth Syst. Sci. Data Discuss. 15, 2879–2926 (2022).

  • Dieleman, C. M. et al. Wildfire combustion and carbon shares within the southern Canadian boreal forest: Implications for a warming world. Glob. Chang. Biol. 26, 6062–6079 (2020).


    Google Scholar
     

  • Peltola, O. et al. Monthly gridded information product of northern wetland methane emissions primarily based on upscaling eddy covariance observations. Earth Syst. Sci. Data 1263–1289 (2019).

  • Liu, L. et al. Uncertainty quantification of world internet methane emissions from terrestrial ecosystems utilizing a mechanistically primarily based biogeochemistry mannequin. J. Geophys. Res. Biogeosci. 125, e2019JG005428 (2020).

    CAS 

    Google Scholar
     

  • Matthews, E. & Fung, I. Methane emission from pure wetlands: international distribution, space, and environmental traits of sources. Global Biogeochem. Cycles 1, 61–86 (1987).

    CAS 

    Google Scholar
     

  • Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).

    CAS 

    Google Scholar
     

  • Quinton, W. L., Hayashi, M. & Chasmer, L. E. Permafrost-thaw-induced land-cover change within the Canadian subarctic: implications for water sources. Hydrol. Process. 25, 152–158 (2011).


    Google Scholar
     

  • Karlsson, J. M., Lyon, S. W. & Destouni, G. Temporal conduct of lake size-distribution in a thawing permafrost panorama in northwestern Siberia. Remote Sensing 6, 621–636 (2014).


    Google Scholar
     

  • Nitze, I. et al. Landsat-based pattern evaluation of lake dynamics throughout northern permafrost areas. Remote Sens. 9, 640 (2017).


    Google Scholar
     

  • Olthof, I., Fraser, R. H., van der Sluijs, J. & Travers-Smith, H. Detecting long-term Arctic floor water adjustments. Nat. Clim. Change 13, 1191–1193 (2023).


    Google Scholar
     

  • Leppiniemi, O., Karjalainen, O., Aalto, J., Luoto, M. & Hjort, J. Environmental areas for palsas and peat plateaus are disappearing at a circumpolar scale. Cryosphere 17, 3157–3176 (2023).


    Google Scholar
     

  • Liljedahl, A. Okay. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its affect on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).

    CAS 

    Google Scholar
     

  • Zoltai, S. C. Permafrost distribution in peatlands of west-central Canada in the course of the Holocene heat interval 6000 years BP. Geogr. Phys. Quat. 49, 45–54 (1995).


    Google Scholar
     

  • Kuhn, M. et al. Gridded product of methane emissions from Boreal-Arctic wetlands and lakes. Zenodo (2025).

  • Kuhn, M. et al. BAWLD-CH4: Methane Fluxes from Boreal and Arctic Ecosystems (Arctic Data Centre, 2025); https://doi.org/10.18739/A27H1DN5S

  • Olefeldt, D. et al. The Fractional Land Cover Estimates from the Boreal–Arctic Wetland and Lake Dataset (BAWLD), 2021 (Arctic Data Center, 2021); https://doi.org/10.18739/A2C824F9X

  • Global Wetland Methane Emissions derived from FLUXNET and the UpCH4 Model, 20012018 (DOE ORNL DAAC, 2024); https://doi.org/10.3334/ORNLDAAC/2253

  • Zhang, Z. et al. Development of a worldwide dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M). Zenodo (2021).

  • Peltola, O. et al. Dataset for “Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations”. Zenodo (2019).

  • Runfola, D. et al. geoBoundaries: a worldwide database of political administrative boundaries. PLoS One 15, e0231866 (2020).

    CAS 

    Google Scholar
     

  • Kuhn, M. et al. Code for the article ‘Current and future methane emissions from boreal-Arctic wetlands and lakes’. Zenodo (2025).

  • kenziekuhn4/bawldCH4_scaling (GitHub, 2025);


  • This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
    https://www.nature.com/articles/s41558-025-02413-y
    and if you wish to take away this text from our web site please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *