Distributed battery-free bioelectronic implants with improved community energy switch effectivity through magnetoelectrics

This web page was created programmatically, to learn the article in its unique location you may go to the hyperlink bellow:
https://www.nature.com/articles/s41551-025-01489-3
and if you wish to take away this text from our website please contact us


  • Lee, J. et al. Neural recording and stimulation utilizing wi-fi networks of microimplants. Nat. Electron. 4, 604–614 (2021).


    Google Scholar
     

  • Tawakol, O. et al. In-vivo testing of a novel wi-fi intraspinal microstimulation interface for restoration of motor perform following spinal wire harm. Artif. Organs 48, 263–273 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Becerra-Fajardo, L. et al. First-in-human demonstration of floating EMG sensors and stimulators wirelessly powered and operated by quantity conduction. J. Neuroeng. Rehabil. 21, 4 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Becerra-Fajardo, L. et al. Floating EMG sensors and stimulators wirelessly powered and operated by quantity conduction for networked neuroprosthetics. J. Neuroeng. Rehabil. 19, 57 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benedict, B. C., Ghanbari, M. M. & Muller, R. Phased array beamforming strategies for powering biomedical ultrasonic implants. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69, 2756–2765 (2022).

    PubMed 

    Google Scholar
     

  • Costello, J. T. et al. A low-power communication scheme for wi-fi, 1000 channel brain-machine interfaces. J. Neural. Eng. 19, 036037 (2022).


    Google Scholar
     

  • Dinis, H., Colmiais, I. & Mendes, P. M. Extending the bounds of wi-fi energy switch to miniaturized implantable digital units. Micromachines 8, 359 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyu, H. et al. Synchronized biventricular coronary heart pacing in a closed-chest porcine mannequin based mostly on wirelessly powered leadless pacemakers. Sci. Rep. 10, 2067 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, N., Ha-Van, N. & Seo, C. Midfield wi-fi energy switch for deep-tissue biomedical implants. IEEE Antennas Wirel. Propag. Lett. 19, 2270–2274 (2020).


    Google Scholar
     

  • Lee, J. et al. A sub-mm3 wi-fi neural stimulator IC for visible cortical prosthesis with optical energy harvesting and seven.5-kb/s knowledge telemetry. IEEE J. Solid-State Circuits (2024).

  • Kim, W. et al. Magnetoelectrics permits massive energy supply to mm-sized wi-fi bioelectronics. J. Appl. Phys. 134, 094103 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. C. et al. A wi-fi millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nat. Biomed. Eng. (2022).

  • Bichurin, M. I. et al. Resonance magnetoelectric results in layered magnetostrictive-piezoelectric composites. Phys. Rev. B 68, 132408 (2003).


    Google Scholar
     

  • Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation applied sciences. Nat. Rev. Mater. 2, 16093 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bottomley, P. A. & Andrew, E. R. RF magnetic discipline penetration, part shift and energy dissipation in organic tissue: implications for NMR imaging. Phys. Med. Biol. 23, 630 (1978).

    CAS 
    PubMed 

    Google Scholar
     

  • Alrashdan, F. T. et al. Wearable wi-fi energy techniques for ‘ME-BIT’ magnetoelectric-powered bio implants. J. Neural Eng. 18, 045011 (2021).


    Google Scholar
     

  • Sdrulla, A., Guan, Y. & Raja, S. Spinal wire stimulation: medical efficacy and potential mechanisms. Pain. Pract. 18, 1048–1067 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gill, M. L. et al. Neuromodulation of lumbosacral spinal networks permits unbiased stepping after full paraplegia. Nat. Med. 24, 1677–1682 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Angeli, C. A. et al. Recovery of over-ground strolling after continual motor full spinal wire harm. N. Engl. J. Med. 379, 1244–1250 (2018).

    PubMed 

    Google Scholar
     

  • Rowald, A. et al. Activity-dependent spinal wire neuromodulation quickly restores trunk and leg motor features after full paralysis. Nat. Med. 28, 260–271 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Sayenko, D. G., Angeli, C., Harkema, S. J., Edgerton, V. R. & Gerasimenko, Y. P. Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed people. J. Neurophysiol. 111, 1088–1099 (2014).

    PubMed 

    Google Scholar
     

  • Greiner, N. et al. Recruitment of upper-limb motoneurons with epidural electrical stimulation of the cervical spinal wire. Nat. Commun. 12, 435 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powell, M. P. et al. Epidural stimulation of the cervical spinal wire for post-stroke upper-limb paresis. Nat. Med. 29, 689–699 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • North, R. B. & Prager, J. P. In Neuromodulation 2nd edn (eds. Krames, E. S., Peckham, P. H. & Rezai, A. R.) 587–596 (Academic, 2018).

  • Woods, J. E. et al. Miniature battery-free epidural cortical stimulators. Sci. Adv. 10, eadn0858 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alò, Okay. et al. Factors affecting impedance of percutaneous leads in spinal wire stimulation. Neuromodulation Technol. Neural Interface 9, 128–135 (2006).


    Google Scholar
     

  • Toossi, A. et al. Comparative neuroanatomy of the lumbosacral spinal wire of the rat, cat, pig, monkey, and human. Sci. Rep. 11, 1955 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steele, A. G. et al. Mapping lumbar efferent and afferent spinal circuitries through paddle array in a porcine mannequin. J. Neurosci. Methods 405, 110104 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zander, H. J., Graham, R. D., Anaya, C. J. & Lempka, S. F. Anatomical and technical elements affecting the neural response to epidural spinal wire stimulation. J. Neural Eng. 17, 036019 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abraham, W. T. & Hayes, D. L. Cardiac resynchronization remedy for coronary heart failure. Circulation 108, 2596–2603 (2003).

    PubMed 

    Google Scholar
     

  • Brabham, W. W. & Gold, M. R. The function of AV and VV optimization for CRT. J. Arrhythmia 29, 153–161 (2013).


    Google Scholar
     

  • Kotsakou, M. et al. Pacemaker insertion. Ann. Transl. Med. 3, 42–42 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vouliotis, A. I. et al. Leadless pacemakers: present achievements and future views. Eur. Cardiol. 18, e49 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furman, S., Hurzeler, P. & Mehra, R. Cardiac pacing and pacemakers IV. Threshold of cardiac stimulation. Am. Heart J. 94, 115–124 (1977).

    CAS 
    PubMed 

    Google Scholar
     

  • Abbott. AveirTM Leadless Pacemaker IFU. Product Instructions for Use (2021); https://www.accessdata.fda.gov/cdrh_docs/pdf15/P150035D.pdf

  • Medtronic. MicraTM AV MC1AVR1 Manual (2020); https://wwwp.medtronic.com/crs-upload/letters/401/401_Micra_AV_Implant_Manual_with_Medical_Procedure_and_EMI_Precautions.pdf

  • Zangooei, H., Mirbozorgi, S. A. & Mirbozorgi, S. Thermal evaluation of warmth switch from catheters and implantable units to the blood movement. Micromachines 12, 230 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roujol, S., Tan, A. Y., Anter, E., Josephson, M. E. & Nezafat, R. Towards cardiac and respiratory movement characterization from electrophysiology knowledge for improved actual time MR-integration. J. Cardiovasc. Magn. Reson. 15, P68 (2013).

    PubMed Central 

    Google Scholar
     

  • Werner, R., Ehrhardt, J., Schmidt, R. & Handels, H. Patient-specific finite component modeling of respiratory lung movement utilizing 4D CT picture knowledge. Med. Phys. 36, 1500–1511 (2009).

    PubMed 

    Google Scholar
     

  • Mukherjee, D. & Mallick, D. Magnetoelectric wi-fi energy switch system for biomedical implants. In 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) (IEEE, 2021).

  • Rupp, T., Truong, B. D., Williams, S. & Roundy, S. Magnetoelectric transducer designs to be used as wi-fi energy receivers in wearable and implantable functions. Materials 12, 512 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Moreno, A. et al. Wireless networks of injectable microelectronic stimulators based mostly on rectification of quantity carried out excessive frequency currents. J. Neural Eng. 19, 056015 (2022).


    Google Scholar
     

  • Nair, V. et al. Miniature battery-free bioelectronics. Science 382, eabn4732 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y., Zhang, J., Zhu, C. & Chan, C. C. A research on the protection evaluation of an inductive energy switch system for kitchen home equipment. Energies 15, 5218 (2022).


    Google Scholar
     

  • Singer, A. & Robinson, J. T. Wireless energy supply strategies for miniature implantable bioelectronics. Adv. Healthc. Mater. 10, 2100664 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Webster, J. G. Design of Cardiac Pacemakers (IEEE, 1995).

  • Baumgartner, C. et al. IT’IS Database for thermal and electromagnetic parameters of organic tissues. Version 4.2. IT’IS Foundation (2024).

  • Yu, Z. et al. MagNI: a magnetoelectrically powered and managed wi-fi neurostimulating implant. IEEE Trans. Biomed. Circuits Syst. 14, 1241–1252 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined physique components with deep studying. Nat. Neurosci. 21, 1281–1289 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Woods, J. E. et al. Dataset for distributed battery-free bioelectronic implants with improved community energy switch effectivity through magnetoelectrics Fig. 2a and Fig. second. figshare (2025).

  • Woods, J. E. et al. Dataset for distributed battery-free bioelectronic implants with improved community energy switch effectivity through magnetoelectrics Fig. 2c. figshare (2025).

  • Woods, J. E. et al. Dataset for distributed battery-free bioelectronic implants with improved community energy switch effectivity through magnetoelectrics Fig. 3b. figshare (2025).

  • Woods, J. E. et al. Dataset for distributed battery-free bioelectronic implants with improved community energy switch effectivity through magnetoelectrics Fig. 3e. figshare (2025).

  • Woods, J. E. et al. Dataset for distributed battery-free bioelectronic implants with improved community energy switch effectivity through magnetoelectrics Fig. 4f. figshare (2025).


  • This web page was created programmatically, to learn the article in its unique location you may go to the hyperlink bellow:
    https://www.nature.com/articles/s41551-025-01489-3
    and if you wish to take away this text from our website please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *