This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41467-025-62841-4
and if you wish to take away this text from our website please contact us
Nimmo, F. Thermal and compositional evolution of the core. Treatise Geophys. 9, 201–219 (2015).
Davies, C. Cooling historical past of Earth’s core with excessive thermal conductivity. Phys. Earth Planet. Inter. 247, 65–79 (2015).
Labrosse, S. Thermal evolution of the core with a excessive thermal conductivity. Phys. Earth Planet. Inter. 247, 36–55 (2015).
Tarduno, J. A. et al. Geodynamo, photo voltaic wind, and magnetopause 3.4 to three.45 billion years in the past. Science 327, 1238–1240 (2010).
Fu, R. R. et al. Paleomagnetism of three.5-4.0 Ga zircons from the Barberton Greenstone Belt, South Africa. Earth Planet. Sci. Lett. 567, 116999 (2021).
Bono, R. Okay. et al. The pint database: a definitive compilation of absolute palaeomagnetic depth determinations since 4 billion years in the past. Geophys. J. Int. 229, 522–545 (2022).
Buffett, B. A., Huppert, H. E., Lister, J. R. & Woods, A. W. On the thermal evolution of the Earth’s core. J. Geophys. Res. Solid Earth 101, 7989–8006 (1996).
Gubbins, D., Alfè, D., Masters, G., Price, G. D. & Gillan, M. Gross thermodynamics of two-component core convection. Geophys. J. Int. 157, 1407–1414 (2004).
Braginsky, S. Structure of the F layer and causes for convection within the Earth’s core. Soviet Phys. Dokl. 149, 8–10 (1963).
Buffett, B. A. & Seagle, C.T. Stratification of the highest of the core because of chemical interactions with the mantle. J. Geophys. Res. Solid Earth 115 (2010).
Brodholt, J. & Badro, J. Composition of the low seismic velocity e({prime}) layer on the prime of Earth’s core. Geophys. Res. Lett. 44, 8303–8310 (2017).
Davies, C. J., Pozzo, M., Gubbins, D. & Alfè, D. Transfer of oxygen to Earth’s core from a long-lived magma ocean. Earth Planet. Sci. Lett. 538, 116208 (2020).
Lay, T. & Young, C. J. The stably-stratified outermost core revisited. Geophys. Res. Lett. 17, 2001–2004 (1990).
Helffrich, G. & Kaneshima, S. Outer-core compositional stratification from noticed core wave pace profiles. Nature 468, 807–810 (2010).
Kaneshima, S. Array analyses of SMKS waves and the stratification of Earth’s outermost core. Phys. Earth Planet. Inter. 276, 234–246 (2018).
Hirose, Okay., Wood, B. & Vočadlo, L. Light components within the Earth’s core. Nat. Rev. Earth Environ. 2, 645–658 (2021).
McDonough, W. F. & Sun, S.-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).
Birch, F. Density and composition of mantle and core. J. Geophys. Res. 69, 4377–4388 (1964).
McDonough, W. 3.16–compositional mannequin for the Earth’s core. in Treatise on Geochemistry 559–577 (Elsevier, 2014).
Dauphas, N., Poitrasson, F., Burkhardt, C., Kobayashi, H. & Kurosawa, Okay. Planetary and meteoritic mg/si and δ30si variations inherited from photo voltaic nebula chemistry. Earth Planet. Sci. Lett. 427, 236–248 (2015).
Fischer, R. A. et al. High strain metallic–silicate partitioning of Ni, Co, V, Cr, Si, and O. Geochim. Cosmochim. Acta 167, 177–194 (2015).
Rubie, D. C. et al. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed photo voltaic system our bodies and accretion of water. Icarus 248, 89–108 (2015).
Siebert, J., Badro, J., Antonangeli, D. & Ryerson, F. J. Terrestrial accretion underneath oxidizing circumstances. Science 339, 1194–1197 (2013).
Fischer, R. A., Campbell, A. J. & Ciesla, F. J. Sensitivities of Earth’s core and mantle compositions to accretion and differentiation processes. Earth Planet. Sci. Lett. 458, 252–262 (2017).
Dziewonski, A. M. & Anderson, D. L. Preliminary reference earth mannequin. Phys. Earth Planet. Inter. 25, 297–356 (1981).
Badro, J., Côté, A. S. & Brodholt, J. P. A seismologically constant compositional mannequin of Earth’s core. Proc. Natl. Acad. Sci. USA 111, 7542–7545 (2014).
Nimmo, F. Energetics of the core. in Treatise on Geophysics 2nd edn, Vol. 8 (ed. Schubert, G.) 27–55 (Elsevier, 2015).
Christian, J. W. The Theory of Transformations in Metals and Alloys (Newnes, 2002).
Huguet, L., Van Orman, J. A., Hauck II, S. A. & Willard, M. A. Earth’s inside core nucleation paradox. Earth Planet. Sci. Lett. 487, 9–20 (2018).
Davies, C., Pozzo, M. & Alfè, D. Assessing the inside core nucleation paradox with atomic-scale simulations. Earth Planet. Sci. Lett. 507, 1–9 (2019).
Wilson, A. J., Walker, A. M., Alfè, D. & Davies, C. J. Probing the nucleation of iron in Earth’s core utilizing molecular dynamics simulations of supercooled liquids. Phys. Rev. B 103, 214113 (2021).
Sun, Y., Zhang, F., Mendelev, M. I., Wentzcovitch, R. M. & Ho, Okay.-M. Two-step nucleation of the Earth’s inside core. Proc. Natl. Acad. Sci. USA 119, 2113059119 (2022).
Wilson, A. J., Alfè, D., Walker, A. M. & Davies, C. J. Can homogeneous nucleation resolve the inside core nucleation paradox? Earth Planet. Sci. Lett. 614, 118176 (2023).
Sun, Y. et al. Unveiling the impact of Ni on the formation and construction of Earth’s inside core. Proc. Natl. Acad. Sci. USA 121, 2316477121 (2024).
Wilson, A. et al. The formation and evolution of Earth’s inside core. Nat. Rev. Earth Environ. 6, 140–154 (2025).
Alfè, D., Gillan, M. & Price, G. Complementary approaches to the ab initio calculation of melting properties. J. Chem. Phys. 116, 6170–6177 (2002).
Wood, B. J. Carbon within the core. Earth Planet. Sci. Lett. 117, 593–607 (1993).
Davies, C., Pozzo, M., Gubbins, D. & Alfè, D. Constraints from materials properties on the dynamics and evolution of Earth’s core. Nat. Geosci. 8, 678–685 (2015).
Umemoto, Okay. & Hirose, Okay. Chemical compositions of the outer core examined by first rules calculations. Earth Planet. Sci. Lett. 531, 116009 (2020).
Ichikawa, H., Tsuchiya, T. & Tange, Y. The p-v-t equation of state and thermodynamic properties of liquid iron. J. Geophys. Res. Solid Earth 119, 240–252 (2014).
Andrault, D. et al. Solidus and liquidus profiles of chondritic mantle: implication for melting of the Earth throughout its historical past. Earth Planet. Sci. Lett. 304, 251–259 (2011).
Nomura, R. et al. Low core-mantle boundary temperature inferred from the solidus of pyrolite. Science 343, 522–525 (2014).
Wahl, S. M. & Militzer, B. High-temperature miscibility of iron and rock throughout terrestrial planet formation. Earth Planet. Sci. Lett. 410, 25–33 (2015).
Takafuji, N., Hirose, Okay., Mitome, M. & Bando, Y. Solubilities of O and Si in liquid iron in equilibrium with (Mg, Fe) SiO3 perovskite and the sunshine components within the core. Geophys. Res. Lett. 32 (2005).
Alfè, D., Gillan, M. & Price, G. D. Composition and temperature of the Earth’s core constrained by combining ab initio calculations and seismic knowledge. Earth Planet. Sci. Lett. 195, 91–98 (2002).
Hirose, Okay., Labrosse, S. & Hernlund, J. Composition and state of the core. Annu. Rev. Earth Planet. Sci. 41, 657–691 (2013).
Li, Y., Vočadlo, L., Alfè, D. & Brodholt, J. Carbon partitioning between the Earth’s inside and outer core. J. Geophys. Res. Solid Earth 124, 12812–12824 (2019).
Masters, G. & Gubbins, D. On the decision of density inside the Earth. Phys. Earth Planet. Inter. 140, 159–167 (2003).
Yuan, L. & Steinle-Neumann, G. Hydrogen distribution between the Earth’s inside and outer core. Earth Planet. Sci. Lett. 609, 118084 (2023).
Fischer, R. A., Cottrell, E., Hauri, E., Lee, Okay. Okay. & Le Voyer, M. The carbon content material of Earth and its core. Proc. Natl. Acad. Sci. USA 117, 8743–8749 (2020).
Blanchard, I. et al. The metallic–silicate partitioning of carbon throughout Earth’s accretion and its distribution within the early photo voltaic system. Earth Planet. Sci. Lett. 580, 117374 (2022).
Côté, A. S., Vočadlo, L. & Brodholt, J. P. The impact of silicon impurities on the section diagram of iron and doable implications for the Earth’s core construction. J. Phys. Chem. Solids 69, 2177–2181 (2008).
Badro, J., Brodholt, J. P., Piet, H., Siebert, J. & Ryerson, F. J. Core formation and core composition from coupled geochemical and geophysical constraints. Proc. Natl. Acad. Sci. USA 112, 12310–12314 (2015).
Lasbleis, M., Kervazo, M. & Choblet, G. The destiny of liquids trapped throughout the Earth’s inside core progress. Geophys. Res. Lett. 47, 2019–085654 (2020).
Pang, G. et al. Enhanced inside core fine-scale heterogeneity in the direction of Earth’s centre. Nature 620, 570–575 (2023).
Driscoll, P. & Davies, C. The “new core paradox:” challenges and potential options. J. Geophys. Res. Solid Earth 128, e2022JB025355 (2023).
Biggin, A. J. et al. Palaeomagnetic area depth variations recommend mesoproterozoic inner-core nucleation. Nature 526, 245–248 (2015).
Bono, R. Okay., Tarduno, J. A., Nimmo, F. & Cottrell, R. D. Young inside core inferred from ediacaran ultra-low geomagnetic area depth. Nat. Geosci. 12, 143–147 (2019).
Badro, J. et al. Magnesium partitioning between Earth’s mantle and core and its potential to drive an early exsolution geodynamo. Geophys. Res. Lett. 45, 13–240 (2018).
Hirose, Okay. et al. Crystallization of silicon dioxide and compositional evolution of the Earth’s core. Nature 543, 99–102 (2017).
Wilson, A. J. et al. Powering Earth’s historical dynamo with silicon precipitation. Geophys. Res. Lett. 49, 2022–100692 (2022).
Wilson, A. J., Pozzo, M., Davies, C. J., Walker, A. M. & Alfè, D. Examining the ability provided to Earth’s dynamo by magnesium precipitation and radiogenic warmth manufacturing. Phys. Earth Planet. Inter. 343, 107073 (2023).
Mittal, T. et al. Precipitation of a number of mild components to energy Earth’s early dynamo. Earth Planet. Sci. Lett. 532, 116030 (2020).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169 (1996).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. b 59, 1758 (1999).
Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: purposes of the generalized gradient approximation for alternate and correlation. Phys. Rev. B 46, 6671 (1992).
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).
He, Y. et al. Superionic iron alloys and their seismic velocities in Earth’s inside core. Nature 602, 258–262 (2022).
Rein ten Wolde, P., Ruiz-Montero, M. J. & Frenkel, D. Numerical calculation of the speed of crystal nucleation in a Lennard-Jones system at average undercooling. J. Chem. Phys. 104, 9932–9947 (1996).
Walker, A., Davies, C., Wilson, A. & Bergman, M. A non-equilibrium slurry mannequin for planetary cores with utility to Earth’s F-layer. Proc. R. Soc. A 481, 20240505 (2025).
This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41467-025-62841-4
and if you wish to take away this text from our website please contact us
