This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-025-02186-8
and if you wish to take away this text from our website please contact us
Sun X, Yon DK, Nguyen TT, Tanisawa Okay, Son Okay, Zhang L, et al. Dietary and different life-style elements and their affect on non-communicable ailments within the Western Pacific area. The Lancet Regional Health – Western Pacific. 2024;43: 100842.
Li W, Qiu X, Ma H, Geng Q. Incidence and long-term particular mortality developments of metabolic syndrome within the United States. Front Endocrinol. 2022;13. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886893/. Cited 2024 Jun 4.
Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, et al. Increasing incidence and prevalence of the inflammatory bowel ailments with time, primarily based on systematic evaluate. Gastroenterology. 2012;142:46-54.e42.
Patterson CC, Karuranga S, Salpea P, Saeedi P, Dahlquist G, Soltesz G, et al. Worldwide estimates of incidence, prevalence and mortality of sort 1 diabetes in kids and adolescents: outcomes from the International Diabetes Federation Diabetes Atlas, ninth version. Diabetes Research and Clinical Practice. 2019;157:107842.
Gillespie KM, Bain SC, Barnett AH, Bingley PJ, Christie MR, Gill GV, et al. The rising incidence of childhood sort 1 diabetes and lowered contribution of high-risk HLA haplotypes. Lancet. 2004;364:1699–700.
Gregory GA, Robinson TIG, Linklater SE, Wang F, Colagiuri S, De Beaufort C, et al. Global incidence, prevalence, and mortality of sort 1 diabetes in 2021 with projection to 2040: a modelling research. Lancet Diabetes Endocrinol. 2022;10:741–60.
Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, et al. Rising prevalence of a number of sclerosis worldwide: insights from the Atlas of MS, third version. Mult Scler. 2020;26:1816–21.
Phelps NH, Singleton RK, Zhou B, Heap RA, Mishra A, Bennett JE, et al. Worldwide developments in underweight and weight problems from 1990 to 2022: a pooled evaluation of 3663 population-representative research with 222 million kids, adolescents, and adults. The Lancet. 2024;403:1027–50.
Boutari C, Mantzoros CS. A 2022 replace on the epidemiology of weight problems and a name to motion: as its twin COVID-19 pandemic seems to be receding, the weight problems and dysmetabolism pandemic continues to rage on. Metabolism. 2022;133: 155217.
Wu D, Jin Y, Xing Y, Abate MD, Abbasian M, Abbasi-Kangevari M, et al. Global, regional, and nationwide incidence of six main immune-mediated inflammatory ailments: findings from the worldwide burden of illness research 2019. eClinicalMedicine. 2023;64:102193.
Torow N, Hornef MW. The neonatal window of alternative: setting the stage for life-long host-microbial interplay and immune homeostasis. Journal of Immunology. 2017;198:557–63.
Gollwitzer ES, Marsland B. Impact of early-life exposures on immune maturation and susceptibility to illness. Trends Immunol. 2015;36:684–96.
Bindels LB, Watts JEM, Theis KR, Carrion VJ, Ossowicki A, Seifert J, et al. A blueprint for up to date research of microbiomes. Microbiome. 2025;13(95):s40168-025-02091–0.
Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human intestine microbiome in the course of the first yr of life. Cell Host Microbe. 2015;17:690–703.
Valles-Colomer M, Blanco-Míguez A, Manghi P, Asnicar F, Dubois L, Golzato D, et al. The person-to-person transmission panorama of the intestine and oral microbiomes. Nature. 2023;614:125–35.
Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal microbiota throughout a essential developmental window has lasting metabolic penalties. Cell. 2014;158:705–21.
Al Nabhani Z, Dulauroy S, Marques R, Cousu C, Al Bounny S, Déjardin F, et al. A weaning response to microbiota is required for resistance to immunopathologies within the grownup. Immunity. 2019;50:1276-1288.e5.
Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in formative years shapes the immune system. Science. 2016;352:539–44.
Hoskinson C, Petersen C, Turvey SE. How the formative years microbiome shapes immune programming in childhood bronchial asthma and allergic reactions. Mucosal Immunol. 2025;18(1):26–35.
Agrawal M, Poulsen G, Colombel J-F, Allin KH, Jess T. Maternal antibiotic publicity throughout being pregnant and danger of IBD in offspring: a population-based cohort research. Gut. 2023;72:804–5.
Cabrera-Rubio R, Pickett-Nairne Okay, González-Solares S, Collado MC, Venter C. The maternal eating regimen index and offspring microbiota at 1 month of life: insights from the Mediterranean start cohort MAMI. Nutrients. 2024;16: 314.
Delaroque C, Bonazzi E, Huillet M, Ellero-Simatos S, Hao F, Patterson A, et al. Maternal eating regimen alters offspring’s formative years host-microbiota communication via goblet cells, leading to long-lasting ailments susceptibility. 2024. Available from: http://biorxiv.org/lookup/doi/10.1101/2024.07.05.602179. Cited 2024 Oct 11.
Zou J, Ngo VL, Wang Y, Wang Y, Gewirtz AT. Maternal fiber deprivation alters microbiota in offspring, leading to low-grade irritation and predisposition to weight problems. Cell Host Microbe. 2023;31:45-57.e7.
Grant ET, Boudaud M, Muller A, Macpherson AJ, Desai MS. Maternal eating regimen and intestine microbiome composition modulate early-life immune improvement. EMBO Mol Med. 2023;15: e17241.
Perez-Muñoz ME, Arrieta M-C, Ramer-Tait AE, Walter J. A essential evaluation of the “sterile womb” and “in utero colonization” hypotheses: implications for analysis on the pioneer toddler microbiome. Microbiome. 2017;5:48.
Rodríguez JM, Murphy Okay, Stanton C, Ross RP, Kober OI, Juge N, et al. The composition of the intestine microbiota all through life, with an emphasis on formative years. Microbial Ecology in Health, Disease. 2015;26:26050.
Derrien M, Alvarez A-S, De Vos WM. The intestine microbiota within the first decade of life. Trends Microbiol. 2019;27:997–1010.
Wang X-A, Li J-P, Lee M-S, Yang S-F, Chang Y-S, Chen L, et al. A typical trajectory of intestine microbiome improvement in the course of the first month in wholesome neonates with restricted inter-individual environmental variations. Sci Rep. 2024;14:3264.
Selma-Royo M, Dubois L, Manara S, Armanini F, Cabrera-Rubio R, Valles-Colomer M, et al. Birthmode and environment-dependent microbiota transmission dynamics are complemented by breastfeeding in the course of the first yr. Cell Host Microbe. 2024;32:996-1010.e4.
Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. Succession of microbial consortia within the creating toddler intestine microbiome. Proc Natl Acad Sci USA. 2011;108:4578–85.
Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP, Wong MC, et al. Temporal improvement of the intestine microbiome in early childhood from the TEDDY research. Nature. 2018;562:583–8.
Beller L, Deboutte W, Falony G, Vieira-Silva S, Tito RY, Valles-Colomer M, et al. Successional phases in toddler intestine microbiota maturation. 2021;12(6):e0185721.
Peterson D, Bonham KS, Rowland S, Pattanayak CW, Klepac-Ceraj V. Comparative evaluation of 16S rRNA gene and metagenome sequencing in pediatric intestine microbiomes. Front Microbiol. 2021;12: 670336.
Fernández-Pato A, Sinha T, Gacesa R, Andreu-Sánchez S, Gois MFB, Gelderloos-Arends J, et al. Choice of DNA extraction technique impacts stool microbiome restoration and subsequent phenotypic affiliation analyses. Sci Rep. 2024;14:3911.
Gemmell MR, Jayawardana T, Koentgen S, Brooks E, Kennedy N, Berry S, et al. Optimised human stool pattern assortment for multi-omic microbiota evaluation. Sci Rep. 2024;14:16816.
Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, start mode, and eating regimen form microbiome maturation throughout formative years. Sci Transl Med. 2016;8. Available from: https://www.science.org/doi/10.1126/scitranslmed.aad7121. Cited 2024 May 13.
Selma-Royo M, Calatayud Arroyo M, García-Mantrana I, Parra-Llorca A, Escuriet R, Martínez-Costa C, et al. Perinatal atmosphere shapes microbiota colonization and toddler progress: affect on host response and intestinal perform. Microbiome. 2020;8:167.
Reyman M, Van Houten MA, Van Baarle D, Bosch AATM, Man WH, Chu MLJN, et al. Impact of supply mode-associated intestine microbiota dynamics on well being within the first yr of life. Nat Commun. 2019;10:4997.
Knoop KA, Gustafsson JK, McDonald KG, Kulkarni DH, Coughlin PE, McCrate S, et al. Microbial antigen encounter throughout a preweaning interval is essential for tolerance to intestine micro organism. Sci Immunol. 2017;2: eaao1314.
Brook B, Harbeson D, Ben-Othman R, Viemann D, Kollmann TR. Newborn susceptibility to an infection vs. illness depends upon complicated in vivo interactions of host and pathogen. Semin Immunopathol. 2017;39:615–25.
Adeniyi-Ipadeola GO, Hankins JD, Kambal A, Zeng XL, Patil Okay, Poplaski V, et al. Infant and grownup human intestinal enteroids are morphologically and functionally distinct. Coyne CB, editor. mBio. 2024;15:e01316-24.
Pott J, Stockinger S, Torow N, Smoczek A, Lindner C, McInerney G, et al. Age-dependent TLR3 expression of the intestinal epithelium contributes to rotavirus susceptibility. Sigal LJ, editor. PLoS Pathog. 2012;8:e1002670.
Kollmann TR, Crabtree J, Rein-Weston A, Blimkie D, Thommai F, Wang XY, et al. Neonatal innate TLR-mediated responses are distinct from these of adults. J Immunol. 2009;183:7150–60.
Fulde M, Sommer F, Chassaing B, van Vorst Okay, Dupont A, Hensel M, et al. Neonatal choice by Toll-like receptor 5 influences long-term intestine microbiota composition. Nature. 2018;560:489–93.
Malmuthuge N. Regional and age dependent adjustments in gene expression of toll-like receptors and key antimicrobial defence molecules all through the gastrointestinal tract of dairy calves. Vet Immunol Immunopathol. 2012;146(1):18-26.
Price AE, Shamardani Okay, Lugo KA, Deguine J, Roberts AW, Lee BL, et al. A map of toll-like receptor expression within the intestinal epithelium reveals distinct spatial, cell type-specific, and temporal patterns. Immunity. 2018;49:560-575.e6.
Ulas T, Pirr S, Fehlhaber B, Bickes MS, Loof TG, Vogl T, et al. S100-alarmin-induced innate immune programming protects new child infants from sepsis. Nat Immunol. 2017;18:622–32.
Chassin C, Kocur M, Pott J, Duerr CU, Gütle D, Lotz M, et al. miR-146a mediates protecting innate immune tolerance within the neonate gut. Cell Host Microbe. 2010;8:358–68.
Wang G, Miyahara Y, Guo Z, Khattar M, Stepkowski SM, Chen W. “Default” technology of neonatal regulatory T cells. Journal of Immunology. 2010;185:71–8.
Lubin J-B, Green J, Maddux S, Denu L, Duranova T, Lanza M, et al. Arresting microbiome improvement limits immune system maturation and resistance to an infection in mice. Cell Host Microbe. 2023;31:554-570.e7.
Logan Okay, Bahnson HT, Ylescupidez A, Beyer Okay, Bellach J, Campbell DE, et al. Early introduction of peanut reduces peanut allergy throughout danger teams in pooled and causal inference analyses. Allergy. 2023;78:1307–18.
Roberts G, Bahnson HT, Du Toit G, O’Rourke C, Sever ML, Brittain E, et al. Defining the window of alternative and goal populations to forestall peanut allergy. Journal of Allergy and Clinical Immunology. 2023;151:1329–36.
An D, Oh SF, Olszak T, Neves JF, Avci FY, Erturk-Hasdemir D, et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal pure killer T cells. Cell. 2014;156:123–33.
Torow N, Hand TW, Hornef MW. Programmed and environmental determinants driving neonatal mucosal immune improvement. Immunity. 2023;56:485–99.
Torow N, Yu Okay, Hassani Okay, Freitag J, Schulz O, Basic M, et al. Active suppression of intestinal CD4+TCRαβ+ T-lymphocyte maturation in the course of the postnatal interval. Nat Commun. 2015;6:7725.
Koch MA, Reiner GL, Lugo KA, Kreuk LSM, Stanbery AG, Ansaldo E, et al. Maternal IgG and IgA antibodies dampen mucosal T helper cell responses in formative years. Cell. 2016;165:827–41.
Elahi S, Ertelt JM, Kinder JM, Jiang TT, Zhang X, Xin L, et al. Immunosuppressive CD71+ erythroid cells compromise neonatal host defence in opposition to an infection. Nature. 2013;504:158–62.
Harris NL, Spoerri I, Schopfer JF, Nembrini C, Merky P, Massacand J, et al. Mechanisms of neonatal mucosal antibody safety. J Immunol. 2006;177:6256–62.
Lindner C, Wahl B, Föhse L, Suerbaum S, Macpherson AJ, Prinz I, et al. Age, microbiota, and T cells form various particular person IgA repertoires within the gut. J Exp Med. 2012;209:365–77.
Rogier EW, Frantz AL, Bruno MEC, Wedlund L, Cohen DA, Stromberg AJ, et al. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the intestine microbiota and host gene expression. Proc Natl Acad Sci. 2014;111:3074–9.
Knoop KA, McDonald KG, McCrate S, McDole JR, Newberry RD. Microbial sensing by goblet cells controls immune surveillance of luminal antigens within the colon. Mucosal Immunol. 2015;8:198–210.
Gustafsson JK, Davis JE, Rappai T, McDonald KG, Kulkarni DH, Knoop KA, et al. Intestinal goblet cells pattern and ship lumenal antigens by regulated endocytic uptake and transcytosis. eLife. 2021;10:e67292.
Knoop KA, Coughlin PE, Floyd AN, Ndao IM, Hall-Moore C, Shaikh N, et al. Maternal activation of the EGFR prevents translocation of gut-residing pathogenic Escherichia coli in a mannequin of late-onset neonatal sepsis. Proc Natl Acad Sci. 2020;117:7941–9.
Knoop KA, McDonald KG, Kulkarni DH, Newberry RD. Antibiotics promote irritation via the translocation of native commensal colonic micro organism. Gut. 2016;65:1100–9.
Knoop KA, Gustafsson JK, McDonald KG, Kulkarni DH, Kassel R, Newberry RD. Antibiotics promote the sampling of luminal antigens and micro organism through colonic goblet cell related antigen passages. Gut Microbes. 2017;8:400–11.
Knoop KA, McDonald KG, Coughlin PE, Kulkarni DH, Gustafsson JK, Rusconi B, et al. Synchronization of moms and offspring promotes tolerance and limits allergy. JCI Insight. 2020;5: e137943.
Gomez De Agüero M, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune improvement. Science. 2016;351:1296–302.
Kimura I, Miyamoto J, Ohue-Kitano R, Watanabe Okay, Yamada T, Onuki M, et al. Maternal intestine microbiota in being pregnant influences offspring metabolic phenotype in mice. Science. 2020;367: eaaw8429.
Nyangahu DD, Lennard KS, Brown BP, Darby MG, Wendoh JM, Havyarimana E, et al. Disruption of maternal intestine microbiota throughout gestation alters offspring microbiota and immunity. Microbiome. 2018;6:124.
Daft JG, Ptacek T, Kumar R, Morrow C, Lorenz RG. Cross-fostering instantly after start induces a everlasting microbiota shift that’s formed by the nursing mom. Microbiome. 2015;3:17.
Lian V, Hinrichs H, Young M, Faerber A, Özler O, Xie Y, et al. Maternal obesogenic eating regimen attenuates microbiome-dependent offspring weaning response with worsening of steatotic liver illness. Am J Pathol. 2024;194:209–24.
Xue C, Xie Q, Zhang C, Hu Y, Song X, Jia Y, et al. Vertical transmission of the intestine microbiota influences glucose metabolism in offspring of mice with hyperglycaemia in being pregnant. Microbiome. 2022;10:122.
Jašarević E, Bale TL. Prenatal and postnatal contributions of the maternal microbiome on offspring programming. Front Neuroendocrinol. 2019;55: 100797.
Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, et al. Mother-to-infant microbial transmission from totally different physique websites shapes the creating toddler intestine microbiome. Cell Host Microbe. 2018;24:133-145.e5.
Koo H, McFarland BC, Hakim JA, Crossman DK, Crowley MR, Rodriguez JM, et al. An individualized mosaic of maternal microbial strains is transmitted to the toddler intestine microbial group. R Soc open sci. 2020;7: 192200.
Bogaert D, Van Beveren GJ, De Koff EM, Lusarreta Parga P, Balcazar Lopez CE, Koppensteiner L, et al. Mother-to-infant microbiota transmission and toddler microbiota improvement throughout a number of physique websites. Cell Host Microbe. 2023;31:447-460.e6.
Podlesny D, Fricke WF. Strain inheritance and neonatal intestine microbiota improvement: a meta-analysis. Int J Med Microbiol. 2021;311: 151483.
Dubois L, Valles-Colomer M, Ponsero A, Helve O, Andersson S, Kolho Okay-L, et al. Paternal and induced intestine microbiota seeding complement mother-to-infant transmission. Cell Host Microbe. 2024;32:1011-1024.e4.
Valles-Colomer M, Bacigalupe R, Vieira-Silva S, Suzuki S, Darzi Y, Tito RY, et al. Variation and transmission of the human intestine microbiota throughout a number of familial generations. Nat Microbiol. 2021;7:87–96.
Bianco I, Ferrara C, Romano F, Loperfido F, Sottotetti F, El Masri D, et al. The affect of maternal life-style elements on human breast milk microbial composition: a story evaluate. Biomedicines. 2024;12: 2423.
Martínez-Oca P, Alba C, Sánchez-Roncero A, Fernández-Marcelo T, Martín MÁ, Escrivá F, et al. Maternal eating regimen determines milk microbiome composition and offspring intestine colonization in Wistar rats. Nutrients. 2023;15: 4322.
Taylor R, Keane D, Borrego P, Arcaro Okay. Effect of maternal eating regimen on maternal milk and breastfed toddler intestine microbiomes: a scoping evaluate. Nutrients. 2023;15: 1420.
Laursen MF, Pekmez CT, Larsson MW, Lind MV, Yonemitsu C, Larnkjær A, et al. Maternal milk microbiota and oligosaccharides contribute to the toddler intestine microbiota meeting. ISME Communications. 2021;1:21.
Selma-Royo M, Calvo Lerma J, Cortés-Macías E, Collado MC. Human milk microbiome: from precise information to future perspective. Semin Perinatol. 2021;45: 151450.
Spreckels JE, Fernández-Pato A, Kruk M, Kurilshikov A, Garmaeva S, Sinha T, et al. Analysis of microbial composition and sharing in low-biomass human milk samples: a comparability of DNA isolation and sequencing methods. ISME Communications. 2023;3:116.
Borewicz Okay, Gu F, Saccenti E, Arts ICW, Penders J, Thijs C, et al. Correlating toddler fecal microbiota composition and human milk oligosaccharide consumption by microbiota of 1-month-old breastfed infants. Molecular Nutrition Food Res. 2019;63:1801214.
Hassan AA, Wozniak JM, Vilen Z, Li W, Jadhav A, Parker CG, et al. Chemoproteomic mapping of human milk oligosaccharide (HMO) interactions in cells. RSC Chemical Biology. 2022;3:1369–74.
Angeloni S, Ridet JL, Kusy N, Gao H, Crevoisier F, Guinchard S, et al. Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology. 2005;15:31–41.
Morrin ST, Lane JA, Marotta M, Bode L, Carrington SD, Irwin JA, et al. Bovine colostrum-driven modulation of intestinal epithelial cells for elevated commensal colonisation. Appl Microbiol Biotechnol. 2019;103:2745–58.
Newburg DS. Neonatal safety by an innate immune system of human milk consisting of oligosaccharides and glycans. J Anim Sci. 2009;87:26–34.
Kong C, De Jong A, De Haan BJ, Kok J, De Vos P. Human milk oligosaccharides and non-digestible carbohydrates cut back pathogen adhesion to intestinal epithelial cells by decoy results or by attenuating bacterial virulence. Food Res Int. 2022;151: 110867.
Piotrowski M, Wultańska D, Pituch H. The prebiotic impact of human milk oligosaccharides 3′- and 6′-sialyllactose on adhesion and biofilm formation by Clostridioides difficile—pilot research. Microbes Infect. 2022;24: 104929.
Walsh C, Owens RA, Bottacini F, Lane JA, van Sinderen D, Hickey RM. HMO-primed bifidobacteria exhibit enhanced potential to stick to intestinal epithelial cells. Front Microbiol. 2023;14. Available from: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1232173/full. Cited 2025 May 21.
Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik Okay, et al. The human intestine microbiome in early-onset sort 1 diabetes from the TEDDY research. Nature. 2018;562:589–94.
Pucci N, Ujčič-Voortman J, Verhoeff AP, Mende DR. Priority results, vitamin and milk glycan-metabolic potential drive Bifidobacterium longum subspecies dynamics within the toddler intestine microbiome. PeerJ. 2025;13: e18602.
Olm MR, Dahan D, Carter MM, Merrill BD, Yu FB, Jain S, et al. Robust variation in toddler intestine microbiome meeting throughout a spectrum of life. Science. 2022;376:1220–3.
Vatanen T, Ang QY, Siegwald L, Sarker SA, Le Roy CI, Duboux S, et al. A definite clade of Bifidobacterium longum within the intestine of Bangladeshi kids thrives throughout weaning. Cell. 2022;185:4280-4297.e12.
Taft DH, Lewis ZT, Nguyen N, Ho S, Masarweh C, Dunne-Castagna V, et al. Bifidobacterium species colonization in infancy: a world cross-sectional comparability by inhabitants historical past of breastfeeding. Nutrients. 2022;14: 1423.
Czosnykowska-Łukacka M, Lis-Kuberka J, Królak-Olejnik B, Orczyk-Pawiłowicz M. Changes in human milk immunoglobulin profile throughout extended lactation. Front Pediatr. 2020;8: 8.
Usami Okay, Niimi Okay, Matsuo A, Suyama Y, Sakai Y, Sato S, et al. The intestine microbiota induces Peyer’s-patch-dependent secretion of maternal IgA into milk. Cell Rep. 2021;36: 109655.
Roux ME, McWilliams M, Phillips-Quagliata JM, Weisz-Carrington P, Lamm ME. Origin of IgA-secreting plasma cells within the mammary gland. J Exp Med. 1977;146:1311–22.
Lindner C, Thomsen I, Wahl B, Ugur M, Sethi MK, Friedrichsen M, et al. Diversification of reminiscence B cells drives the continual adaptation of secretory antibodies to intestine microbiota. Nat Immunol. 2015;16:880–8.
De Groot N, Van Kuik-Romeijn P, Lee SH, De Boer HA. Increased immunoglobulin A ranges in milk by over-expressing the murine polymeric immunoglobulin receptor gene within the mammary gland epithelial cells of transgenic mice. Immunology. 2000;101:218–24.
Pabst O, Slack E. IgA and the intestinal microbiota: the significance of being particular. Mucosal Immunol. 2020;13:12–21.
Moor Okay, Diard M, Sellin ME, Felmy B, Wotzka SY, Toska A, et al. High-avidity IgA protects the gut by enchaining rising micro organism. Nature. 2017;544:498–502.
Chong H-Y, Tan LT-H, Law JW-F, Hong Okay-W, Ratnasingam V, Ab Mutalib N-S, et al. Exploring the potential of human milk and components milk on infants’ intestine and well being. Nutrients. 2022;14:3554.
Pandey U, Aich P. Postnatal intestinal mucosa and intestine microbial composition develop hand in hand: a mouse research. Biomedical Journal. 2023;46: 100519.
Bridgman SL, Konya T, Azad MB, Sears MR, Becker AB, Turvey SE, et al. Infant intestine immunity: a preliminary research of IgA associations with breastfeeding. J Dev Orig Health Dis. 2016;7:68–72.
Sprong RC, Hulstein MF, Van der Meer R. Bactericidal actions of milk lipids. Antimicrob Agents Chemother. 2001;45:1298–301.
Pieper R, Vahjen W, Zentek J. Intestinal lactose and mineral focus have an effect on the microbial ecophysiology alongside the gastrointestinal tract of formula-fed neonatal piglets. J Anim Sci. 2016;94:3786–95.
Jiang T, Liu B, Li J, Dong X, Lin M, Zhang M, et al. Association between sn-2 fatty acid profiles of breast milk and improvement of the toddler intestinal microbiome. Food Funct. 2018;9:1028–37.
Mu C, Cai Z, Bian G, Du Y, Ma S, Su Y, et al. New insights into porcine milk N-glycome and the potential relation with offspring intestine microbiome. J Proteome Res. 2019;18:1114–24.
Manzoni P, Rinaldi M, Cattani S, Pugni L, Romeo MG, Messner H, et al. Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: a randomized trial. JAMA. 2009;302:1421–8.
Ellison RT, Giehl TJ. Killing of gram-negative micro organism by lactoferrin and lysozyme. J Clin Invest. 1991;88:1080–91.
Larsen IS, Jensen BAH, Bonazzi E, Choi BSY, Kristensen NN, Schmidt EGW, et al. Fungal lysozyme leverages the intestine microbiota to curb DSS-induced colitis. Gut Microbes. 2021;13: 1988836.
Sitarik AR, Bobbitt KR, Havstad SL, Fujimura KE, Levin AM, Zoratti EM, et al. Breast milk reworking progress issue β Is related to neonatal intestine microbial composition. J Pediatr Gastroenterol Nutr. 2017;65:e60–7.
Lu P, Yamaguchi Y, Fulton WB, Wang S, Zhou Q, Jia H, et al. Maternal aryl hydrocarbon receptor activation protects newborns in opposition to necrotizing enterocolitis. Nat Commun. 2021;12:1042.
Tian M, Li Q, Zheng T, Yang S, Chen F, Guan W, et al. Maternal microbe-specific modulation of the offspring microbiome and improvement throughout being pregnant and lactation. Gut Microbes. 2023;15: 2206505.
Xu D, Zhou S, Liu Y, Scott AL, Yang J, Wan F. Complement in breast milk modifies offspring intestine microbiota to advertise toddler well being. Cell. 2024;187:750-763.e20.
Yeruva L, Mulakala BK, Rajasundaram D, Gonzalez S, Cabrera-Rubio R, Martínez-Costa C, et al. Human milk miRNAs affiliate to maternal dietary vitamins, milk microbiota, toddler intestine microbiota and progress. Clin Nutr. 2023;42:2528–39.
Golan-Gerstl R, Elbaum Shiff Y, Moshayoff V, Schecter D, Leshkowitz D, Reif S. Characterization and organic perform of milk-derived miRNAs. Mol Nutr Food Res. 2017;61(10).
Yao T, Tuncil YE, Bhattarai S, Gurung M, Bode L, Yeruva L, et al. Effect of maternal miRNAs and milk oligosaccharides on regulating the expansion habits of Bifidobacterium longum subsp. infantis. Journal of Functional Foods. 2025;128: 106800.
Samuel TM, Zhou Q, Giuffrida F, Munblit D, Verhasselt V, Thakkar SK. Nutritional and non-nutritional composition of human milk is modulated by maternal, toddler, and methodological elements. Front Nutr. 2020;7: 576133.
Collado MC, Laitinen Okay, Salminen S, Isolauri E. Maternal weight and extreme weight achieve throughout being pregnant modify the immunomodulatory potential of breast milk. Pediatr Res. 2012;72:77–85.
Gomez-Gallego C, Garcia-Mantrana I, Salminen S, Collado MC. The human milk microbiome and elements influencing its composition and exercise. Semin Fetal Neonatal Med. 2016;21:400–5.
Collado MC, Isolauri E, Laitinen Okay, Salminen S. Effect of mom’s weight on toddler’s microbiota acquisition, composition, and exercise throughout early infancy: a potential follow-up research initiated in early being pregnant. Am J Clin Nutr. 2010;92:1023–30.
Galley JD, Bailey M, Kamp Dush C, Schoppe-Sullivan S, Christian LM. Maternal weight problems is related to alterations within the intestine microbiome in toddlers. Shankar Okay, editor. PLoS ONE. 2014;9:e113026.
Crusell MKW, Hansen TH, Nielsen T, Allin KH, Rühlemann MC, Damm P, et al. Comparative research of the intestine microbiota within the offspring of moms with and with out gestational diabetes. Front Cell Infect Microbiol. 2020;10: 536282.
Li Okay, Jin J, Liu Z, Chen C, Huang L, Sun Y. Dysbiosis of toddler intestine microbiota is said to the altered fatty acid composition of human milk from moms with gestational diabetes mellitus: a potential cohort research. Gut Microbes. 2025;17: 2455789.
Schulfer AF, Battaglia T, Alvarez Y, Bijnens L, Ruiz VE, Ho M, et al. Intergenerational switch of antibiotic-perturbed microbiota enhances colitis in prone mice. Nat Microbiol. 2018;3:234–42.
Miyoshi J, Bobe AM, Miyoshi S, Huang Y, Hubert N, Delmont TO, et al. Peripartum antibiotics promote intestine dysbiosis, lack of immune tolerance, and inflammatory bowel illness in genetically susceptible offspring. Cell Rep. 2017;20:491–504.
Gonzalez-Perez G, Hicks AL, Tekieli TM, Radens CM, Williams BL, Lamousé-Smith ESN. Maternal antibiotic therapy impacts improvement of the neonatal intestinal microbiome and antiviral immunity. J Immunol. 2016;196:3768–79.
Ward CP, Perelman D, Durand LR, Robinson JL, Cunanan KM, Sudakaran S, et al. Effects of fermented and fiber-rich meals on maternal & offspring microbiome research (FeFiFo-MOMS)—research design and strategies. Contemp Clin Trials. 2025;150: 107834.
Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, et al. Dietary emulsifiers affect the mouse intestine microbiota selling colitis and metabolic syndrome. Nature. 2015;519:92–6.
Chassaing B, Van de Wiele T, De Bodt J, Marzorati M, Gewirtz AT. Dietary emulsifiers instantly alter human microbiota composition and gene expression ex vivo potentiating intestinal irritation. Gut. 2017;66:1414–27.
Chassaing B, Compher C, Bonhomme B, Liu Q, Tian Y, Walters W, et al. Randomized controlled-feeding research of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the intestine microbiota and metabolome. Gastroenterology. 2021;162:743–56.
Delaroque C, Chassaing B. Dietary emulsifier consumption accelerates sort 1 diabetes improvement in NOD mice. NPJ Biofilms Microbiomes. 2024;10:1.
Hornef MW, Torow N. ‘Layered immunity’ and the ‘neonatal window of opportunity’ – timed succession of non-redundant phases to determine mucosal host–microbial homeostasis after start. Immunology. 2020;159:15–25.
Al Nabhani Z, Eberl G. Imprinting of the immune system by the microbiota early in life. Mucosal Immunol. 2020;13:183–9.
Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. Microbial publicity throughout formative years has persistent results on pure killer T cell perform. Science. 2012;336:489–93.
Al Nabhani Z, Dulauroy S, Lécuyer E, Polomack B, Campagne P, Berard M, et al. Excess calorie consumption early in life will increase susceptibility to colitis in maturity. Nat Metab. 2019;1:1101–9.
Goethel A, Turpin W, Rouquier S, Zanello G, Robertson SJ, Streutker CJ, et al. Nod2 influences microbial resilience and susceptibility to colitis following antibiotic publicity. Mucosal Immunol. 2019;12:720–32.
Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L, Wlodarska M, et al. Early life antibiotic-driven adjustments in microbiota improve susceptibility to allergic bronchial asthma. EMBO Rep. 2012;13:440–7.
Cahenzli J, Köller Y, Wyss M, Geuking MB, McCoy KD. Intestinal microbial variety throughout early-life colonization shapes long-term IgE ranges. Cell Host Microbe. 2013;14:559–70.
Adami AJ, Bracken SJ, Guernsey LA, Rafti E, Maas KR, Graf J, et al. Early-life antibiotics attenuate regulatory T cell technology and enhance the severity of murine home mud mite-induced bronchial asthma. Pediatr Res. 2018;84:426–34.
Zhang XS, Li J, Krautkramer KA, Badri M, Battaglia T, Borbet TC, et al. Antibiotic-induced acceleration of sort 1 diabetes alters maturation of innate intestinal immunity. Hooper LV, Garrett WS, editors. eLife. 2018;7:e37816.
Zanvit P, Konkel JE, Jiao X, Kasagi S, Zhang D, Wu R, et al. Antibiotics in neonatal life enhance murine susceptibility to experimental psoriasis. Nat Commun. 2015;6:8424.
Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li Okay, et al. Antibiotics in formative years alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–6.
Schulfer AF, Schluter J, Zhang Y, Brown Q, Pathmasiri W, McRitchie S, et al. The affect of early-life sub-therapeutic antibiotic therapy (STAT) on extreme weight is strong regardless of switch of intestinal microbes. ISME J. 2019;13:1280–92.
Jašarević E, Hill EM, Kane PJ, Rutt L, Gyles T, Folts L, et al. The composition of human vaginal microbiota transferred at start impacts offspring well being in a mouse mannequin. Nat Commun. 2021;12:6289.
Salia S, Burke FF, Hinks ME, Randell AM, Matheson MA, Walling SG, et al. Gut microbiota switch from the preclinical maternal immune activation mannequin of autism is enough to induce sex-specific alterations in immune response and behavioural outcomes. Brain Behav Immun. 2025;123:813–23.
Stephen-Victor E, Kuziel GA, Martinez-Blanco M, Jugder B-E, Benamar M, Wang Z, et al. RELMβ units the brink for microbiome-dependent oral tolerance. Nature. 2025;638:760–8.
Riedler J, Braun-Fahrländer C, Eder W, Schreuer M, Waser M, Maisch S, et al. Exposure to farming in formative years and improvement of bronchial asthma and allergy: a cross-sectional survey. Lancet. 2001;358:1129–33.
Schuijs MJ, Willart MA, Vergote Okay, Gras D, Deswarte Okay, Ege MJ, et al. Farm mud and endotoxin shield in opposition to allergy via A20 induction in lung epithelial cells. Science. 2015;349:1106–10.
Benchimol EI, Kaplan GG, Otley AR, Nguyen GC, Underwood FE, Guttmann A, et al. Rural and concrete residence throughout formative years is related to danger of inflammatory bowel illness: a population-based inception and start cohort research. Am J Gastroenterol. 2017;112:1412–22.
Risnes KR, Belanger Okay, Murk W, Bracken MB. Antibiotic publicity by 6 months and bronchial asthma and allergy at 6 years: findings in a cohort of 1,401 US kids. Am J Epidemiol. 2011;173:310–8.
Mai X-M, Kull I, Wickman M, Bergström A. Antibiotic use in formative years and improvement of allergic ailments: respiratory an infection as the reason. Clin Exp Allergy. 2010;40:1230–7.
Shaw SY, Blanchard JF, Bernstein CN. Association between using antibiotics within the first yr of life and pediatric inflammatory bowel illness. Am J Gastroenterol. 2010;105:2687–92.
Kronman MP, Zaoutis TE, Haynes Okay, Feng R, Coffin SE. Antibiotic publicity and IBD improvement amongst kids: a population-based cohort research. Pediatrics. 2012;130:e794-803.
Örtqvist AK, Lundholm C, Halfvarson J, Ludvigsson JF, Almqvist C. Fetal and formative years antibiotics publicity and really early onset inflammatory bowel illness: a population-based research. Gut. 2019;68:218–25.
Azad MB, Bridgman SL, Becker AB, Kozyrskyj AL. Infant antibiotic publicity and the event of childhood obese and central adiposity. Int J Obes. 2014;38:1290–8.
Boursi B, Mamtani R, Haynes Okay, Yang Y-X. The impact of previous antibiotic publicity on diabetes danger. Eur J Endocrinol. 2015;172:639–48.
Thavagnanam S, Fleming J, Bromley A, Shields MD, Cardwell CR. A meta-analysis of the affiliation between Caesarean part and childhood bronchial asthma. Clin Exp Allergy. 2008;38:629–33.
Neu J, Rushing J. Cesarean versus vaginal supply: long-term toddler outcomes and the hygiene speculation. Clin Perinatol. 2011;38:321–31.
Decker E, Engelmann G, Findeisen A, Gerner P, Laass M, Ney D, et al. Cesarean supply is related to celiac illness however not inflammatory bowel illness in kids. Pediatrics. 2010;125:e1433-1440.
Sikder MdAA, Rashid RB, Ahmed T, Sebina I, Howard DR, Ullah MdA, et al. Maternal eating regimen modulates the toddler microbiome and intestinal Flt3L obligatory for dendritic cell improvement and immunity to respiratory an infection. Immunity. 2023;56:1098-1114.e10.
Katimbwa DA, Kim Y, Kim MJ, Jeong M, Lim J. Solubilized β-glucan supplementation in C57BL/6J mice dams augments neurodevelopment and cognition within the offspring pushed by intestine microbiome reworking. Foods. 2024;13: 3102.
Pretorius RA, Bodinier M, Prescott SL, Palmer DJ. Maternal fiber dietary intakes throughout being pregnant and toddler allergic illness. Nutrients. 2019;11: 1767.
Myles IA, Fontecilla NM, Janelsins BM, Vithayathil PJ, Segre JA, Datta SK. Parental dietary fats consumption alters offspring microbiome and immunity. J Immunol. 2013;191:3200–9.
Babu ST, Niu X, Raetz M, Savani RC, Hooper LV, Mirpuri J. Maternal high-fat eating regimen ends in microbiota-dependent growth of ILC3s in mice offspring. JCI Insight. 2018;3: e99223.
Costa SO, Chaves WF, Lopes PKF, Silva IM, Burguer B, Ignácio-Souza LM, et al. Maternal consumption of a high-fat eating regimen modulates the inflammatory response of their offspring, mediated by the M1 muscarinic receptor. Front Immunol. 2023;14: 1273556.
Huang C, Tan H, Song M, Liu Okay, Liu H, Wang J, et al. Maternal western eating regimen mediates susceptibility of offspring to Crohn’s-like colitis by deoxycholate technology. Microbiome. 2023;11:96.
Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell. 2016;165:1762–75.
Di Gesù CM, Matz LM, Bolding IJ, Fultz R, Hoffman KL, Gammazza AM, et al. Maternal intestine microbiota mediate intergenerational results of high-fat eating regimen on descendant social habits. Cell Rep. 2022;41: 111461.
Nagel EM, Jacobs D, Johnson KE, Foster L, Duncan Okay, Kharbanda EO, et al. Maternal dietary consumption of whole fats, saturated fats, and added sugar is related to toddler adiposity and weight standing at 6 mo of age. J Nutr. 2021;151:2353–60.
Gonzalez-Nahm S, Hoyo C, Østbye T, Neelon B, Allen C, Benjamin-Neelon SE. Associations of maternal eating regimen with toddler adiposity at start, 6 months and 12 months. BMJ Open. 2019;9: e030186.
Olivier-Van Stichelen S, Rother KI, Hanover JA. Maternal publicity to non-nutritive sweeteners impacts progeny’s metabolism and microbiome. Front Microbiol. 2019;10: 1360.
Milà-Guasch M, Ramírez S, Llana SR, Fos-Domènech J, Dropmann LM, Pozo M, et al. Maternal emulsifier consumption packages offspring metabolic and neuropsychological well being in mice. Bouret SG, editor. PLoS Biol. 2023;21:e3002171.
Rytter H, Naimi S, Wu G, Lewis J, Duquesnoy M, Vigué L, et al. In vitro microbiota mannequin recapitulates and predicts individualised sensitivity to dietary emulsifier. Gut. 2025;74(5):761-774.
Daniel N, Wu GD, Walters W, Compher C, Ni J, Delaroque C, et al. Human intestinal microbiome determines individualized inflammatory response to dietary emulsifier carboxymethylcellulose consumption. Cell Mol Gastroenterol Hepatol. 2024;17:315–8.
Bonazzi E, Bretin A, Vigué L, Hao F, Patterson AD, Gewirtz AT, et al. Individualized microbiotas dictate the affect of dietary fiber on colitis sensitivity. Microbiome. 2024;12:5.
Argaw-Denboba A, Schmidt TSB, Di Giacomo M, Ranjan B, Devendran S, Mastrorilli E, et al. Paternal microbiome perturbations affect offspring health. Nature. 2024;629:652–9.
Chleilat F, Schick A, Deleemans JM, Ma Okay, Alukic E, Wong J, et al. Paternal excessive protein eating regimen modulates physique composition, insulin sensitivity, epigenetics, and intestine microbiota intergenerationally in rats. FASEB J. 2021;35: e21847.
Korgan AC, Foxx CL, Hashmi H, Sago SA, Stamper CE, Heinze JD, et al. Effects of paternal high-fat eating regimen and maternal rearing atmosphere on the intestine microbiota and habits. Sci Rep. 2022;12:10179.
Gerretsen VIV, Schuijs MJ. The position of LPS and CpG within the farm impact in opposition to allergic reactions, and past. Allergol Select. 2022;6:104–10.
Qing L, Qian X, Zhu H, Wang J, Sun J, Jin Z, et al. Maternal-infant probiotic transmission mitigates early-life stress-induced autism in mice. Gut Microbes. 2025;17: 2456584.
Correia Gomes D, Meza Alvarado JE, Zamora Briseño JA, Cano Sarmiento C, Camacho Morales A, Viveros CR. Maternal supplementation with Lacticaseibacillus rhamnosus GG improves glucose tolerance and modulates the intestinal microbiota of offspring. Diseases. 2024;12:312.
Rautava S, Collado MC, Salminen S, Isolauri E. Probiotics modulate host-microbe interplay within the placenta and fetal intestine: a randomized, double-blind, placebo-controlled trial. Neonatology. 2012;102:178–84.
Jones JM, Reinke SN, Mousavi-Derazmahalleh M, Garssen J, Jenmalm MC, Srinivasjois R, et al. Maternal prebiotic supplementation throughout being pregnant and lactation modifies the microbiome and brief chain fatty acid profile of each mom and toddler. Clin Nutr. 2024;43:969–80.
Alemu BK, Azeze GG, Wu L, Lau SL, Wang CC, Wang Y. Effects of maternal probiotic supplementation on breast milk microbiome and toddler intestine microbiome and well being: a scientific evaluate and meta-analysis of randomized managed trials. Am J Obstet Gynecol MFM. 2023;5(11):101148.
Holst AQ, Myers P, Rodríguez-García P, Hermes GDA, Melsaether C, Baker A, et al. Infant components supplemented with 5 human milk oligosaccharides shifts the fecal microbiome of formula-fed infants nearer to that of breastfed infants. Nutrients. 2023;15: 3087.
Eor JY, Lee CS, Moon SH, Cheon JY, Pathiraja D, Park B, et al. Effect of probiotic-fortified toddler components on toddler intestine well being and microbiota modulation. Food Sci Anim Resour. 2023;43:659–73.
Alliet P, Vandenplas Y, Roggero P, Jespers SNJ, Peeters S, Stalens J-P, et al. Safety and efficacy of a probiotic-containing toddler components supplemented with 2’-fucosyllactose: a double-blind randomized managed trial. Nutr J. 2022;21:11.
ESPGHAN Committee on Nutrition, Braegger C, Chmielewska A, Decsi T, Kolacek S, Mihatsch W, et al. Supplementation of toddler components with probiotics and/or prebiotics: a scientific evaluate and remark by the ESPGHAN committee on vitamin. J Pediatr Gastroenterol Nutr. 2011;52:238–50.
Nakaji S, Sugawara Okay, Saito D, Yoshioka Y, MacAuley D, Bradley T, et al. Trends in dietary fiber consumption in Japan over the past century. Eur J Nutr. 2002;41:222–7.
Lee JH, Duster M, Roberts T, Devinsky O. United States dietary developments since 1800: lack of affiliation between saturated fatty acid consumption and non-communicable ailments. Front Nutr. 2022;8: 748847.
Viennois E, Pujada A, Sung J, Yang C, Gewirtz AT, Chassaing B, et al. Impact of PepT1 deletion on microbiota composition and colitis requires a number of generations. npj Biofilms Microbiomes. 2020;6:27.
Gilley SP, Ruebel ML, Chintapalli SV, Wright CJ, Rozance PJ, Shankar Okay. Calorie restriction throughout gestation impacts maternal and offspring fecal microbiome in mice. Front Endocrinol (Lausanne). 2024;15:1423464.
Rakhshandehroo M, Harvey L, De Bruin A, Timmer E, Lohr J, Tims S, et al. Maternal publicity to purified versus grain-based eating regimen throughout early lactation in mice impacts offspring progress and reduces responsivity to Western-style eating regimen problem in maturity. J Dev Orig Health Dis. 2025;16:e3.
Chu DM, Antony KM, Ma J, Prince AL, Showalter L, Moller M, et al. The early toddler intestine microbiome varies in affiliation with a maternal high-fat eating regimen. Genome Med. 2016;8:77.
Hansen CHF, Krych Ł, Buschard Okay, Metzdorff SB, Nellemann C, Hansen LH, et al. A maternal gluten-free eating regimen reduces irritation and diabetes incidence within the offspring of NOD mice. Diabetes. 2014;63:2821–32.
This web page was created programmatically, to learn the article in its authentic location you’ll be able to go to the hyperlink bellow:
https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-025-02186-8
and if you wish to take away this text from our website please contact us
