Brain age hole as a predictive biomarker that hyperlinks growing older, life-style, and neuropsychiatric well being

This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s43856-025-01100-5
and if you wish to take away this text from our website please contact us


  • Badhwar, A. et al. Assessment of brain-derived extracellular vesicle enrichment for blood biomarker evaluation in age-related neurodegenerative ailments: a global overview. Alzheimers Dement 20, 4411–4422 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzales M. M. et al. Biological growing older processes underlying cognitive decline and neurodegenerative illness. J. Clin. Investig. 132. (2022).

  • Van Hove L. I. et al. Converging cross-modal proof for a phylogenetic age impact in neurodegenerative susceptibility. Brain, printed on-line Feb 5. https://doi.org/10.1093/brain/awaf050. (2025).

  • de Fátima Dias M., Duarte J. V., de Carvalho P., Castelo-Branco M. Unravelling pathological ageing with mind age hole estimation in Alzheimer’s illness, diabetes, and schizophrenia. Brain Commun. printed on-line March 11. (2025).

  • Hatos, A. Anxiety within the age of AI: setting up a instrument to evaluate public perceptions. Brain 16, 415 (2025).

    Article 

    Google Scholar
     

  • Yi, F. et al. Genetically supported targets and drug repurposing for mind growing older: a scientific examine within the UK Biobank. Sci. Adv. 11, eadr3757 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bellantuono, L. et al. Predicting mind age with complicated networks: from adolescence to maturity. Neuroimage 225, 117458 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hong, J. et al. Brain age prediction of youngsters utilizing routine mind MR pictures by way of deep studying. Front Neurol. 11, 584682 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nemati, S., Arjmandi, M., Busby, N., Bonilha, L. & Fridriksson, J. The affect of age-related listening to loss on cognitive decline: the mediating position of mind age hole. Neuroscience 551, 185–195 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teselink, J. et al. Efficacy of non-invasive mind stimulation on international cognition and neuropsychiatric signs in Alzheimer’s illness and gentle cognitive impairment: a meta-analysis and systematic assessment. Ageing Res Rev. 72, 101499 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Tian, Y. E. et al. Heterogeneous growing older throughout a number of organ techniques and prediction of continual illness and mortality. Nat. Med. 29, 1221–1231 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ballester, P. L. et al. Gray matter quantity drives the mind age hole in schizophrenia: a SHAP examine. Schizophrenia 9, 3 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siddiqi et al. Brain stimulation and mind lesions converge on widespread causal circuits in neuropsychiatric illness. Nat. Hum. Behav. 5, 1707–1716 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almeida, F. C. et al. Lewy physique co-pathology in Alzheimer’s illness and first age-related tauopathy contributes to differential neuropathological, cognitive, and mind atrophy patterns. Alzheimers Dement 21, e14191 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Dinsdale, N. Okay. et al. Learning patterns of the ageing mind in MRI utilizing deep convolutional networks. Neuroimage 224, 117401 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • He, S., Feng, Y., Grant, P. E. & Ou, Y. Deep relation studying for regression and its utility to mind age estimation. IEEE Trans. Med. Imaging 41, 2304–2317 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, H., Gao, Y. & Liu, M. Graph transformer geometric studying of mind networks utilizing multimodal MR pictures for mind age estimation. IEEE Trans. Med. Imaging 42, 456–466 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Honea, R. A. et al. TOMM40 might mediate GFAP, neurofilament mild Protein, pTau181, and mind morphometry in growing older. Aging Brain 7, 100134 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hernandez, A. R. et al. Microbiome-driven alterations in metabolic pathways and impaired cognition in aged feminine TgF344-AD rats. Aging Brain 5, 100119 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fadadu, R. P., Bozack, A. Okay. & Cardenas, A. Chemical and climatic environmental exposures and epigenetic growing older: a scientific assessment. Environ. Res. 274, 121347 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Condello, G. et al. Energy steadiness and energetic life-style: potential mediators of well being and high quality of life notion in growing older. Nutrients 11, 2122 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ploughman, M., Wallack, E. M., Chatterjee, T., Kirkland, M. C. & Curtis, M. E. Health Lifestyle and Aging with MS Consortium. Under-treated despair negatively impacts life-style behaviors, participation and health-related high quality of life amongst older folks with a number of sclerosis. Mult. Scler. Relat. Disord. 40, 101919 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, X.-H., Huang, H.-W., Zeng, J.-Y., Chen, H.-J. & Lin, Y.-J. The helpful affect of night-shift napping on mind core cognition networks in nurses experiencing sleep deprivation: A preliminary resting-state fMRI examine. Sleep. Med. 131, 106503 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, R. et al. Associations of dietary patterns with mind well being from behavioral, neuroimaging, biochemical and genetic analyses. Nat. Ment. Health 2, 535–552 (2024).

    Article 

    Google Scholar
     

  • Tian Y. E., Cole J. H., Bullmore E. T., Zalesky A. Brain, life-style and environmental pathways linking bodily and psychological well being. Nat. Ment. Health printed on-line Aug 9. (2024).

  • Seitz-Holland, J., Haas, S. S., Penzel, N., Reichenberg, A. & Pasternak, O. BrainAGE, mind well being, and psychological issues: a scientific assessment. Neurosci. Biobehav Rev. 159, 105581 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, J. et al. Mendelian randomization analyses help causal relationships between mind imaging-derived phenotypes and threat of psychiatric issues. Nat. Neurosci. 25, 1519–1527 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leonardsen, E. H. et al. Genetic structure of mind age and its causal relations with mind and psychological issues. Mol. Psychiatry 28, 3111–3120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bravo-Ortiz, M. A. et al. A scientific assessment of imaginative and prescient transformers and convolutional neural networks for Alzheimer’s illness classification utilizing 3D MRI pictures. Neural Comput. Appl. 36, 21985–22012 (2024).

    Article 

    Google Scholar
     

  • Das B. Okay. et al. VIViT: variable-input imaginative and prescient transformer framework for 3D MR picture segmentation. arXiv [eess.IV]. printed on-line May 13. (2025).

  • Gibbon S., Breen D. P., MacGillivray T. J., UK Biobank Eye & Vision Consortium. Optic disc pallor in Parkinson’s illness: a UK Biobank examine. Mov. Disord printed on-line Jan 30. (2025).

  • Hanazawa, R., Sato, H. & Hirakawa, A. Alzheimer’s Disease Neuroimaging Initiative. Mixture illness development mannequin to foretell and cluster the long-term trajectory of cognitive decline in Alzheimer’s illness. Ther. Innov. Regul. Sci. 59, 264–277 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Nudelman Okay. N. H., Brumm M. C., Marek Okay., Foroud T. M., for the Parkinson’s Progression Markers Initiative (PPMI) Study. TREM2 variants in Parkinson’s illness: outcomes from the Parkinson’s development markers initiative (PPMI) examine. Alzheimers Dement. 18. (2022).

  • Giff, A. et al. Spatial normalization discrepancies between native and MNI152 mind template scans in gamma ventral capsulotomy sufferers. Psychiatry Res Neuroimaging 329, 111595 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giff, A. et al. 19. Spatial normalization discrepancies between native and MNI152 mind template scans in gamma ventral capsulotomy sufferers. Biol. Psychiatry 93, S101–S102 (2023).

    Article 

    Google Scholar
     

  • Shen Q., Xiao B., Mi H., Yu J., Xiao L. Adaptive studying filters–embedded imaginative and prescient transformer for pixel-level segmentation of low-light concrete cracks. J. Perform Constr. Facil 39. (2025).

  • Sadeghi B., Alesheikh A. A., Jafari A., Rezaie F. Performance analysis of convolutional neural community and imaginative and prescient transformer fashions for groundwater potential mapping. J. Hydrol. 132840 (2025).

  • Kundu B., Khanal B., Simon R., Linte C. A. Assessing the efficiency of the DINOv2 self-supervised studying imaginative and prescient transformer mannequin for the segmentation of the left atrium from MRI pictures. In: Rettmann M. E., Siewerdsen J. H., eds. Medical Imaging 2025: Image-Guided Procedures, Robotic Interventions, and Modeling. 19 (SPIE, 2025).

  • Beheshti, I., Mishra, S., Sone, D., Khanna, P. & Matsuda, H. T1-weighted MRI-driven mind age estimation in Alzheimer’s illness and Parkinson’s illness. Aging Dis. 11, 618–628 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Zuo, Q. et al. Associations of metabolic syndrome with cognitive operate and dementia threat: Evidence from the UK Biobank cohort. Diab. Obes. Metab. 26, 6023–6033 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Schulz, C.-A., Weinhold, L., Schmid, M., Nöthen, M. M. & Nöthlings, U. Analysis of associations between dietary patterns, genetic disposition, and cognitive operate in knowledge from UK Biobank. Eur. J. Nutr. 62, 511–521 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Susetyo, B. & Fitrianto, A. Estimating lacking panel knowledge with regression and multivariate imputation by chained equations (MICE). CAUCHY 9, 94–105 (2024).

    Article 

    Google Scholar
     

  • Austin, P. C. Graphical strategies as an instance the character of the relation between a steady variable and the result when utilizing restricted cubic splines with a Cox proportional hazards mannequin. Stat. Methods Med Res. 34, 277–285 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Erratum to “A dose-effect network meta-analysis model with application in antidepressants using restricted cubic splines.” Stat. Methods Med. Res. 33, NP1 (2024).

  • Fuh, C.-D., Kao, C.-L. M. & Pang, T. Kullback-Leibler divergence and Akaike data criterion generally hidden Markov fashions. IEEE Trans. Inf. Theory 70, 5888–5909 (2024).

    Article 

    Google Scholar
     

  • Saumard, A. & Navarro, F. Finite pattern enchancment of Akaike’s data criterion. IEEE Trans. Inf. Theory 67, 6328–6343 (2021).

    Article 

    Google Scholar
     

  • Xia, L., Nan, B. & Li, Y. Statistical inference for Cox proportional hazards fashions with a diverging variety of covariates. Scand. Stat. Theory Appl. 50, 550–571 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Hahn, G. et al. Polygenic hazard rating fashions for the prediction of Alzheimer’s free survival utilizing the lasso for Cox’s proportional hazards mannequin. Genet. Epidemiol. 49, e22581 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, W., Leung, D. & Shao, Q.-M. Asymptotic false discovery management of the Benjamini-Hochberg process for pairwise comparisons. Sci. China Math. (2024).

    Article 

    Google Scholar
     

  • Hepsomali, P. & Groeger, J. A. Diet, sleep, and psychological well being: insights from the UK Biobank examine. Nutrients 13, 2573 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, S.-Y. et al. Sleep, bodily exercise, sedentary conduct, and threat of incident dementia: a potential cohort examine of 431,924 UK Biobank contributors. Mol. Psychiatry 27, 4343–4354 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Chudasama, Y. V. et al. Healthy life-style and life expectancy in folks with multimorbidity within the UK Biobank: A longitudinal cohort examine. PLoS Med. 17, e1003332 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y.-B. et al. Associations of wholesome life-style and socioeconomic standing with mortality and incident heart problems: two potential cohort research. BMJ 373, n604 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez D., Sued M., Valdora M. A Kruskal-Wallis sort check for purposeful knowledge. Commun Stat. Simul. Comput. 1–15 (2025).

  • Yap, S. M., Dillon, M., Crowley, R. Okay. & McGuigan, C. Alemtuzumab-related thyroid illness in folks with a number of sclerosis is related to age and brainstem phenotype at illness onset. Mult. Scler. J. Exp. Transl. Clin. 6, 2055217320933928 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma S., Dhakal S., Bhavsar M. Transfer studying for wildlife classification: Evaluating YOLOv8 towards DenseNet, ResWeb, and VGGNet on a customized dataset. arXiv [cs.CV]. printed on-line July 10. (2024).

  • Arnob, A. S., Kausik, A. Okay., Islam, Z., Khan, R. & Bin Rashid, A. Comparative end result evaluation of cauliflower illness classification primarily based on deep studying strategy VGG16, inception v3, ResWeb, and a customized CNN mannequin. Hybrid. Adv. 10, 100440 (2025).

    Article 

    Google Scholar
     

  • Lee, J. et al. Deep learning-based mind age prediction in regular growing older and dementia. Nat. Aging 2, 412–424 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poloni, Okay. M. & Ferrari, R. J. A deep ensemble hippocampal CNN mannequin for mind age estimation utilized to Alzheimer’s analysis. Expert Syst. Appl. 195, 116622 (2022).

    Article 

    Google Scholar
     

  • Baecker, L., Garcia-Dias, R., Vieira, S., Scarpazza, C. & Mechelli, A. Machine studying for mind age prediction: Introduction to strategies and medical functions. EBioMedicine 72, 103600 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, S., Grant, P. E. & Ou, Y. Global-local transformer for mind age estimation. IEEE Trans. Med. Imaging 41, 213–224 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Pilli, R., Goel, T., Murugan, R. & Tanveer, M. Brain age estimation utilizing universum learning-based kernel random vector purposeful hyperlink regression community. Cogn. Comput. 16, 3186–3199 (2024).

    Article 

    Google Scholar
     

  • Pilli, R., Goel, T. & Murugan, R. Unveiling Alzheimer’s illness by mind age estimation utilizing multi-kernel regression community and magnetic resonance imaging. Comput. Methods Prog. Biomed. 261, 108617 (2025).

    Article 

    Google Scholar
     

  • Liu, W. et al. Risk prediction of Alzheimer’s illness conversion in gentle cognitive impaired inhabitants primarily based on mind age estimation. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 2468–2476 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Koohsari, S. et al. Relationships of in vivo mind norepinephrine transporter and age, BMI, and gender. Synapse 77, e22279 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cadena, E. J., White, D. M., Kraguljac, N. V., Reid, M. A. & Lahti, A. C. Evaluation of fronto-striatal networks throughout cognitive management in unmedicated sufferers with schizophrenia and the impact of antipsychotic medicine. NPJ Schizophr. 4, 8 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Averbeck, B. & O’Doherty, J. P. Reinforcement-learning in fronto-striatal circuits. Neuropsychopharmacology 47, 147–162 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tang, Y., Yan, Y., Mao, J., Ni, J. & Qing, H. The hippocampus related GABAergic neural community impairment in early-stage of Alzheimer’s illness. Ageing Res Rev. 86, 101865 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pal, G. et al. Global cognitive operate and processing pace are related to gait and steadiness dysfunction in Parkinson’s illness. J. Neuroeng. Rehabil. 13, 94 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebaid, D., Crewther, S. G., MacCalman, Okay., Brown, A. & Crewther, D. P. Cognitive processing pace throughout the lifespan: past the affect of motor pace. Front. Aging Neurosci. 9, 62 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albrecht, F. et al. Investigating underlying mind constructions and affect of gentle and subjective cognitive impairment on dual-task efficiency in folks with Parkinson’s illness. Sci. Rep. 14, 9513 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abd-Alrazaq, A., Ahmed, A., Alali, H., Aldardour, A. M. & Househ, M. The effectiveness of significant video games on cognitive processing pace amongst older adults with cognitive impairment: systematic assessment and meta-analysis. JMIR Serious Games 10, e36754 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. The interplay between ageing and Alzheimer’s illness: insights from the hallmarks of ageing. Transl. Neurodegener. 13, 7 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bogdanova I. et al. The effectiveness of rehabilitation packages for the mobilization of compensatory-adaptive neuroplasticity processes in sufferers with Parkinson’s illness in response to indicators of neurotrophic components. Ukrains’kyi Visnyk Psykhonevrolohii 18–23 (2022).

  • Passaretti, M. et al. Neurophysiological markers of motor compensatory mechanisms in early Parkinson’s illness. Brain 147, 3714–3726 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rademacher, Okay. & Nakamura, Okay. Role of dopamine neuron exercise in Parkinson’s illness pathophysiology. Exp. Neurol. 373, 114645 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yegorov, Y. E., Poznyak, A. V., Nikiforov, N. G., Sobenin, I. A. & Orekhov, A. N. The hyperlink between continual stress and accelerated growing older. Biomedicines 8, 198 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bobba-Alves, N. et al. Cellular allostatic load is linked to elevated power expenditure and accelerated organic growing older. Psychoneuroendocrinology 155, 106322 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jamea, A. A. et al. Altered default mode community exercise and cortical thickness as vulnerability indicators for SCZ: a preliminary resting state MRI examine. Eur. Rev. Med. Pharm. Sci. 25, 669–677 (2021).

    CAS 

    Google Scholar
     

  • Wang, H. et al. Shared genetic structure of cortical thickness alterations in main depressive dysfunction and schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 135, 111121 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klotz, L., Antel, J. & Kuhlmann, T. Inflammation in a number of sclerosis: penalties for remyelination and illness development. Nat. Rev. Neurol. 19, 305–320 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Psenicka, M. W., Smith, B. C., Tinkey, R. A. & Williams, J. L. Connecting neuroinflammation and neurodegeneration in a number of sclerosis: Are oligodendrocyte precursor cells a nexus of illness?. Front Cell Neurosci. 15, 654284 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nian, Okay., Harding, I. C., Herman, I. M. & Ebong, E. E. Blood-brain barrier harm in ischemic stroke and its regulation by endothelial mechanotransduction. Front. Physiol. 11, 605398 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Endothelial cells and the blood-brain barrier: Critical determinants of ineffective reperfusion in stroke. Eur. J. Neurosci. 61, e16663 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sone, D. et al. Neuroimaging-based brain-age prediction in numerous types of epilepsy: a signature of psychosis and past. Mol. Psychiatry 26, 825–834 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hwang, G. et al. Brain growing older in temporal lobe epilepsy: chronological, structural, and purposeful. NeuroImage Clin. 25, 102183 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong Y. et al. Progression of frailty and cardiovascular outcomes amongst Medicare beneficiaries. medRxiv 2024; printed on-line Feb 13 (2024).

  • Bernal J. et al. Longitudinal proof for a mutually reinforcing relationship between white matter hyperintensities and cortical thickness in cognitively unimpaired older adults. medRxiv. printed on-line July 10. (2024).

  • Jiménez-Balado, J., Habeck, C., Stern, Y. & Eich, T. The relationship between cortical thickness and white matter hyperintensities in mid to late life. Neurobiol. Aging 141, 129–139 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanford N. et al Lifestyle and BrainAGE in grownup despair. medRxiv. 2025; printed on-line March 28. https://doi.org/10.1101/2025.03.27.25324698.

  • Turpin, A.-L. et al. Association between life-style at completely different life durations and mind integrity in older adults. Neurology 104, e213347 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, R. & Yi, F. Brain age hole mannequin. Zenodo (2025).

    Article 

    Google Scholar
     


  • This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
    https://www.nature.com/articles/s43856-025-01100-5
    and if you wish to take away this text from our website please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *