This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s44454-025-00014-0
and if you wish to take away this text from our web site please contact us
Rai, P. Ok., Lee, J., Brown, R. J. & Kim, Ok.-H. Micro-and nano-plastic air pollution: Behavior, microbial ecology, and remediation applied sciences. J. Clean. Prod. 291, 125240 (2021).
Ali, I. et al. Innovations within the growth of promising adsorbents for the remediation of Microplastics and Nanoplastics–a crucial assessment. Water Res. 230, 119526 (2023).
Ali, I. et al. Micro-and nanoplastics in wastewater therapy crops: incidence, elimination, destiny, impacts and remediation applied sciences–a crucial assessment. Chem. Eng. J. 423, 130205 (2021).
Ali, I. et al. Micro-and nanoplastics within the setting: Occurrence, detection, characterization and toxicity–A crucial assessment. J. Clean. Prod. 313, 127863 (2021).
Chandel, R. & Thakur, S. Microplastic: Evaluating the influence on soil-microbes and plant system. In Bioremediation: Removing Microplastics from Soil (eds Thakur, S. & Singh, L.) 71–80 (ACS Publications, 2023).
Thompson, R. C. et al. Lost at sea: the place is all of the plastic?. Science 304, 838 (2004).
de Souza Machado, A. A. et al. Impacts of Microplastics on the Soil Biophysical Environment. Environ. Sci. Technol. 52, 9656–9665 (2018).
Jaiswal, S., Sharma, B. & Shukla, P. Integrated approaches in microbial degradation of plastics. Environ. Technol. Innov. 17, 100567 (2020).
Qi, Y. et al. Effects of plastic mulch movie residues on wheat rhizosphere and soil properties. J. Hazard. Mater. 387, 121711 (2020).
Qi, Y. et al. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch movie residues on wheat (Triticum aestivum) development. Sci. Total Environ. 645, 1048–1056 (2018).
de Souza Machado, A. A. et al. Microplastics can change soil properties and have an effect on plant efficiency. Environ. Sci. Technol. 53, 6044–6052 (2019).
Ebere, E. C., Wirnkor, V. A. & Ngozi, V. E. Uptake of microplastics by plant: a purpose to fret or to be joyful?. World Sci. N. 131, 256–267 (2019).
Rillig, M. C. Microplastic disguising as soil carbon storage. Environ. Sci. Technol. 52, 6079–6080 (2018).
Rillig, M. C. Microplastic in terrestrial ecosystems and the soil?. Environ. Sci. Technol. 46, 6453–6454 (2012).
Ng, E.-L. et al. An overview of microplastic and nanoplastic air pollution in agroecosystems. Sci. Total Environ. 627, 1377–1388 (2018).
Yang, C. & Gao, X. Impact of microplastics from polyethylene and biodegradable mulch movies on rice (Oryza sativa L.). Sci. Total Environ. 828, 154579 (2022).
Zhang, L. et al. The dosage-and size-dependent results of micro-and nanoplastics in lettuce roots and leaves on the development, photosynthetic, and metabolomics ranges. Plant Physiol. Biochem. 208, 108531 (2024).
Zhang, Y. et al. Impact of microplastic particle measurement on physiological and biochemical properties and rhizosphere metabolism of Zea mays L.: Comparison in numerous soil varieties. Sci. Total Environ. 908, 168219 (2024).
Jung, Y. S. et al. Characterization and regulation of microplastic air pollution for shielding planetary and human well being. Environ. Pollut. 315, 120442 (2022).
Wong, J. Ok. H., Lee, Ok. Ok., Tang, Ok. H. D. & Yap, P.-S. Microplastics within the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable options. Sci. Total Environ. 719, 137512 (2020).
Chandel, R., Chauhan, S., Devi, S. & Thakur, S. Polystyrene microplastic degradation by a novel PGPR Bacillus spizizenii. J. Hazard. Mater. 491, 137892 (2025).
Auta, H. S., Emenike, C. U., Jayanthi, B. & Fauziah, S. H. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. remoted from mangrove sediment. Mar. Pollut. Bull. 127, 15–21 (2018).
Yoshida, S. et al. A bacterium that degrades and assimilates poly (ethylene terephthalate). Science 351, 1196–1199 (2016).
Büks, F. & Kaupenjohann, M. Global concentrations of microplastic in soils, a assessment. Soil Discuss. 2020, 1–26 (2020).
Lares, M., Ncibi, M. C., Sillanpää, M. & Sillanpää, M. Occurrence, identification and elimination of microplastic particles and fibers in typical activated sludge course of and superior MBR expertise. Water Res. 133, 236–246 (2018).
Guo, J. J. et al. Source, migration and toxicology of microplastics in soil. Environ. Int. 137, 105263 (2020).
Talvitie, J., Mikola, A., Koistinen, A. & Setälä, O. Solutions to microplastic air pollution–Removal of microplastics from wastewater effluent with superior wastewater therapy applied sciences. Water Res. 123, 401–407 (2017).
Liu, Ok., Wang, X., Wei, N., Song, Z. & Li, D. Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities: Implications for human well being. Environ. Int. 132, 105127 (2019).
Nizzetto, L., Futter, M. & Langaas, S. Are agricultural soils dumps for microplastics of city origin?. Environ. Sci. Technol. 50, 10777–10779 (2016).
Song, J. et al. The environmental influence of mask-derived microplastics on soil ecosystems. Sci. Total Environ. 912, 169182 (2024).
He, P., Chen, L., Shao, L., Zhang, H. & Lü, F. Municipal stable waste (MSW) landfill: A supply of microplastics?-Evidence of microplastics in landfill leachate. Water Res. 159, 38–45 (2019).
Weithmann, N. et al. Organic fertilizer as a car for the entry of microplastic into the setting. Sci. Adv. 4, eaap8060 (2018).
Gündoğdu, S., Çevik, C., Güzel, E. & Kilercioğlu, S. Microplastics in municipal wastewater therapy crops in Turkey: a comparability of the influent and secondary effluent concentrations. Environ. Monit. Assess. 190, 1–10 (2018).
Wright, S. L., Ulke, J., Font, A., Chan, Ok. L. A. & Kelly, F. J. Atmospheric microplastic deposition in an city setting and an analysis of transport. Environ. Int. 136, 105411 (2020).
Klein, M. & Fischer, E. Ok. Microplastic abundance in atmospheric deposition inside the Metropolitan space of Hamburg, Germany. Sci. Total Environ. 685, 96–103 (2019).
Shi, W. et al. A worldwide assessment on the abundance and threats of microplastics in soils to terrestrial ecosystem and human well being. Sci. Total Environ. 912, 169469 (2024).
Ma, J. et al. Effects of variable-sized polyethylene microplastics on soil chemical properties and features and microbial communities in purple soil. Sci. Total Environ. 868, 161642 (2023).
Yan, Y., Yang, H., Du, Y., Li, X. & Li, X. Effects and molecular mechanisms of polyethylene microplastic oxidation on wheat grain high quality. J. Hazard. Mater. 474, 134816 (2024).
Wang, W. et al. Responses of lettuce (Lactuca sativa L.) development and soil properties to traditional non-biodegradable and new biodegradable microplastics. Environ. Pollut. 341, 122897 (2024).
Jiang, X. et al. Ecotoxicity and genotoxicity of polystyrene microplastics on larger plant Vicia faba. Environ. Pollut. 250, 831–838 (2019).
Hou, L. et al. Biodegradability of polyethylene mulching movie by two Pseudomonas micro organism and their potential degradation mechanism. Chemosphere 286, 131758 (2022).
De Jesus, R. & Alkendi, R. A minireview on the bioremediative potential of microbial enzymes as answer to rising microplastic air pollution. Front. Microbiol. 13, 1066133 (2023).
Paço, A. et al. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci. Total Environ. 586, 10–15 (2017).
Zhang, J. et al. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the center of wax moth Galleria mellonella. Sci. Total Environ. 704, 135931 (2020).
Elahi, A., Bukhari, D. A., Shamim, S. & Rehman, A. Plastics degradation by microbes: A sustainable strategy. J. King Saud. Univ.-Sci. 33, 101538 (2021).
Zhang, X. et al. Systematical assessment of interactions between microplastics and microorganisms within the soil setting. J. Hazard. Mater. 418, 126288 (2021).
Ameen, F., Al-Shwaiman, H. A., Almalki, R., Al-Sabri, A. E. & Sholkamy, E. N. Degradation of polyvinyl chloride (PVC) microplastics using the actinobacterial pressure Streptomyces gobitricini. Biodegradation 36, 19 (2025).
Auta, H., Emenike, C. & Fauziah, S. Screening of Bacillus strains remoted from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environ. Pollut. 231, 1552–1559 (2017).
Lin, Z. et al. Current progress on plastic/microplastic degradation: Fact influences and mechanism. Environ. Pollut. 304, 119159 (2022).
Khan, A. R. et al. Micro/nanoplastics: Critical assessment of their impacts on crops, interactions with different contaminants (antibiotics, heavy metals, and polycyclic fragrant hydrocarbons), and administration methods. Sci. Total Environ. 912, 169420 (2024).
Sushila, D. & Sanya, C. Soil microplastic remediation: exploring the position of microorganism/PGPR in sustainable cleanup. In Bioremediation: Removing Microplastics from Soil (eds Thakur, S. & Singh L.) 57–70 (ACS Publications, 2023).
Shah, M. & Ahmed, S. Chapter 5 – Bioremediation potential of rhizosphere microbes—present views. In Rhizobiome: Ecology, Management and Application (eds Parray, J. A., Shameem, N., Egamberdieva, D. & Sayyed, R. Z.) 81–94 (Academic Press, 2023).
Olabemiwo, F. A., Hagan, A., Cham, M. & Cohan, F. M. Two plant-growth-promoting Bacillus species can make the most of nanoplastics. Sci. Total Environ. 907, 167972 (2024).
Behera, S. & Das, S. Environmental impacts of microplastic and position of plastisphere microbes within the biodegradation and upcycling of microplastic. Chemosphere 334, 138928 (2023).
Chia, R. W., Lee, J.-Y. & Cha, J. Bioremediation of soil microplastics: classes and mechanisms. In Bioremediation: Removing Microplastics from Soil (eds Thakur, S. & Singh L.) 19–32 (ACS Publications, 2023).
Ahmad, F., Saeed, Q., Shah, S. M. U., Gondal, M. A. & Mumtaz, S. Environmental sustainability: challenges and approaches. Nat. Res. Conserv. Adv. Sustain. 243–270 (2022).
Sharma, P., Bano, A., Singh, S. P. & Tong, Y. W. Chapter 1 – Microbial inoculants: Recent progress in formulations and strategies of software. In Microbial Inoculants: Recent Progress and Applications (eds Sharma, V. Ok., Kumar, A., Passarini, M. R. Z., Parmar, S. & Singh, V. Ok.) 1–28 (Academic Press, 2023).
Liu, L. H. et al. Diversity of endophytic micro organism in wild rice (Oryza meridionalis) and potential for selling plant development and degrading phthalates. Sci. Total Environ. 806, 150310 (2022).
Sun, Y. et al. The degradation efficiency of various microplastics and their impact on microbial group throughout composting course of. Bioresour. Technol. 332, 125133 (2021).
Gajendiran, A., Krishnamoorthy, S. & Abraham, J. Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus pressure JASK1 remoted from landfill soil. 3 Biotech 6, 1–6 (2016).
Osman, M. et al. Degradation of polyester polyurethane by Aspergillus sp. pressure S45 remoted from soil. J. Polym. Environ. 26, 301–310 (2018).
Usman, M. A., Momohjimoh, I. & Usman, A. O. Mechanical, bodily and biodegradability performances of handled and untreated groundnut shell powder recycled polypropylene composites. Mater. Res. Express 7, 035302 (2020).
Naranjo-Ortiz, M. A. & Gabaldón, T. Fungal evolution: main ecological variations and evolutionary transitions. Biol. Rev. 94, 1443–1476 (2019).
Solanki, S., Sinha, S. & Singh, R. Myco-degradation of microplastics: an account of recognized pathways and analytical strategies for his or her dedication. Biodegradation 33, 529–556 (2022).
Schwartz, M. et al. Molecular recognition of wooden polyphenols by part II detoxing enzymes of the white rot Trametes versicolor. Sci. Rep. 8, 8472 (2018).
Shin, J., Kim, J.-E., Lee, Y.-W. & Son, H. Fungal cytochrome P450s and the P450 complement (CYPome) of Fusarium graminearum. Toxins 10, 112 (2018).
Sánchez, C. Fungal potential for the degradation of petroleum-based polymers: An overview of macro-and microplastics biodegradation. Biotechnol. Adv. 40, 107501 (2020).
Sánchez, C. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol. Adv. 27, 185–194 (2009).
Straub, S., Hirsch, P. E. & Burkhardt-Holm, P. Biodegradable and petroleum-based microplastics don’t differ of their ingestion and excretion however of their organic results in a freshwater invertebrate Gammarus fossarum. Int. J. Environ. Res. Public Health 14, 774 (2017).
Du, H., Xie, Y. & Wang, J. Microplastic degradation strategies and corresponding degradation mechanism: analysis standing and future views. J. Hazard. Mater. 418, 126377 (2021).
Yuan, J. et al. Microbial degradation and different environmental points of microplastics/plastics. Sci. Total Environ. 715, 136968 (2020).
Abda, E. M., Muleta, A., Tafesse, M., Prabhu, S. V. & Aemro, A. Recent endeavors in microbial remediation of micro-and nanoplastics. Phys. Sci. Rev. 8, 2853–2877(2021).
Ambika et al. Microbial degradation of E-plastics in numerous ecosystems. In Microbial Technology for Sustainable E-waste Management (eds Debbarma, P., Kumar, S., Suyal, D. C. & Soni, R.) 177–199 (Springer, 2023).
Zhang, Y., Pedersen, J. N., Eser, B. E. & Guo, Z. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnol. Adv. 107991 (2022).
Pathak, V. M. Exploitation of bacterial strains for microplastics (LDPE) biodegradation. Chemosphere 316, 137845 (2023).
Tareen, A., Saeed, S., Iqbal, A., Batool, R. & Jamil, N. Biodeterioration of microplastics: A promising step in the direction of plastics waste administration. Polymers 14, 2275 (2022).
Adetunji, C. O. & Anani, O. A. Plastic-eating microorganisms: current biotechnological strategies for recycling of plastic. Microbial Rejuvenation of Polluted Environment, Vol. 1, 353–372 (2021).
Mehmood, S. et al. Structural breakdown and phytotoxic assessments of PE degradation by means of acid hydrolysis, starch addition and Pseudomonas aeruginosa bioremediation. Environ. Res. 217, 114784 (2023).
Kim, H.-W. et al. Biodegradation of polystyrene by micro organism from the soil in widespread environments. J. Hazard. Mater. 416, 126239 (2021).
Skariyachan, S. et al. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste administration landfills and sewage therapy crops. Polym. Degrad. Stab. 149, 52–68 (2018).
Chattopadhyay, I. Role of microbiome and biofilm in environmental plastic degradation. Biocatal. Agric. Biotechnol. 39, 102263 (2022).
Shams, A., Fischer, A., Bodnar, A. & Kliegman, M. Perspectives on Genetically Engineered Microorganisms and Their Regulation within the United States. ACS Synth. Biol. 13, 1412–1423 (2024).
Muhonja, C. N., Makonde, H., Magoma, G. & Imbuga, M. Biodegradability of polyethylene by micro organism and fungi from Dandora dumpsite Nairobi-Kenya. PloS one 13, e0198446 (2018).
Munir, E., Harefa, R., Priyani, N. & Suryanto, D. In IOP Conference Series: Earth and Environmental Science. 012145 (IOP Publishing).
Ojha, N. et al. Evaluation of HDPE and LDPE degradation by fungus, carried out by statistical optimization. Sci. Rep. 7, 39515 (2017).
Chaudhary, A. Ok. & Vijayakumar, R. Effect of chemical therapy on organic degradation of high-density polyethylene (HDPE). Environ., Dev. Sustain. 22, 1093–1104 (2020).
Kang, J. et al. Degradation of beauty microplastics through functionalized carbon nanosprings. Matter 1, 745–758 (2019).
Taghavi, N., Singhal, N., Zhuang, W.-Q. & Baroutian, S. Degradation of plastic waste utilizing stimulated and naturally occurring microbial strains. Chemosphere 263, 127975 (2021).
Oviedo-Anchundia, R. et al. Analysis of the degradation of polyethylene, polystyrene and polyurethane mediated by three filamentous fungi remoted from the Antarctica. Afr. J. Biotechnol. 20, 66–76 (2021).
Sheik, S., Chandrashekar, Ok., Swaroop, Ok. & Somashekarappa, H. Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int. Biodeterior. Biodegrad. 105, 21–29 (2015).
Jeyakumar, D., Chirsteen, J. & Doble, M. Synergistic results of pretreatment and mixing on fungi mediated biodegradation of polypropylenes. Bioresour. Technol. 148, 78–85 (2013).
Williams, J. O. & Osahon, N. T. Assessment of microplastic degrading potential of fungal isolates from an estuary in rivers state, Nigeria. South Asian J. Res. Microbiol. 9, 11–19 (2021).
Sarkhel, R., Sengupta, S., Das, P. & Bhowal, A. Comparative biodegradation examine of polymer from plastic bottle waste utilizing novel remoted micro organism and fungi from marine supply. J. Polym. Res. 27, 1–8 (2020).
Sepperumal, U., Markandan, M. & Palraja, I. Micromorphological and chemical modifications throughout biodegradation of polyethylene terephthalate (PET) by Penicillium sp. J. Microbiol. Biotechnol. Res. 3, 47–53 (2013).
Wilkes, R.-A. & Aristilde, L. Degradation and metabolism of artificial plastics and related merchandise by Pseudomonas sp.: capabilities and challenges. J. Appl. Microbiol. 123, 582–593 (2017).
Wei, W. et al. Polyvinyl chloride microplastics have an effect on methane manufacturing from the anaerobic digestion of waste activated sludge by means of leaching poisonous bisphenol-A. Environ. Sci. Technol. 53, 2509–2517 (2019).
Han, Z. et al. Discovery and characterization of two novel polyethylene terephthalate hydrolases: One from a bacterium recognized in human feces and one from the Streptomyces genus. J. Hazard. Mater. 472, 134532 (2024).
Maroof, L. et al. Identification and characterization of low density polyethylene-degrading micro organism remoted from soils of waste disposal websites. Environ. Eng. Res. 26 (2021).
Nowak, B., Pająk, J., Drozd-Bratkowicz, M. & Rymarz, G. Microorganisms collaborating within the biodegradation of modified polyethylene movies in numerous soils below laboratory situations. Int. Biodeterior. Biodegrad. 65, 757–767 (2011).
Thomas, B., Olanrewaju-Kehinde, D., Popoola, O. & James, E. Degradation of plastic and polythene supplies by some chosen microorganisms remoted from soil. World Appl Sci. J. 33, 1888–1891 (2015).
Harshvardhan, Ok. & Jha, B. Biodegradation of low-density polyethylene by marine micro organism from pelagic waters, Arabian Sea, India. Mar. Pollut. Bull. 77, 100–106 (2013).
Montazer, Z., Habibi Najafi, M. B. & Levin, D. B. Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. Can. J. Microbiol. 65, 224–234 (2019).
Delacuvellerie, A., Cyriaque, V., Gobert, S., Benali, S. & Wattiez, R. The plastisphere in marine ecosystem hosts potential particular microbial degraders together with Alcanivorax borkumensis as a key participant for the low-density polyethylene degradation. J. Hazard. Mater. 380, 120899 (2019).
Asmita, Ok., Shubhamsingh, T. & Tejashree, S. Isolation of plastic degrading micro-organisms from soil samples collected at numerous areas in Mumbai, India. Int. Res. J. Environ. Sci. 4, 77–85 (2015).
Oikawa, E., Linn, Ok. T., Endo, T., Oikawa, T. & Ishibashi, Y. Isolation and characterization of polystyrene degrading microorganisms for zero emission therapy of expanded polystyrene. Environ. Eng. Res. 40, 373–379 (2003).
Jeon, J.-M. et al. Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 remoted from soil grove. Polym. Degrad. Stab. 191, 109662 (2021).
Jeon, H. J. & Kim, M. N. Isolation of mesophilic bacterium for biodegradation of polypropylene. Int. Biodeterior. Biodegrad. 115, 244–249 (2016).
Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N. & Fava, F. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. N. Biotechnol. 52, 35–41 (2019).
Gupta, R., Khan, F., Alqahtani, F. M., Hashem, M. & Ahmad, F. Plant development–selling Rhizobacteria (PGPR) assisted bioremediation of Heavy Metal Toxicity. Appl. Biochem. Biotechnol. 196, 2928–2956 (2024).
Karimi, H. et al. Insights on the bioremediation applied sciences for pesticide-contaminated soils. Environ. Geochem. Health 44, 1329–1354 (2022).
Bao, H. et al. Effects of biochar and natural substrates on biodegradation of polycyclic fragrant hydrocarbons and microbial group construction in PAHs-contaminated soils. J. Hazard. Mater. 385, 121595 (2020).
Haghollahi, A., Fazaelipoor, M. H. & Schaffie, M. The impact of soil kind on the bioremediation of petroleum contaminated soils. J. Environ. Manag. 180, 197–201 (2016).
Zhang, M., Guo, P., Wu, B. & Guo, S. Change in soil ion content material and soil water-holding capability throughout electro-bioremediation of petroleum contaminated saline soil. J. Hazard. Mater. 387, 122003 (2020).
Adedeji, J. A. et al. Microbial bioremediation and biodegradation of petroleum merchandise—a mini assessment. Appl. Sci. 12, 12212 (2022).
Kebede, G., Tafese, T., Abda, E. M., Kamaraj, M. & Assefa, F. Factors influencing the bacterial bioremediation of hydrocarbon contaminants within the soil: mechanisms and impacts. J. Chem. 2021, 9823362 (2021).
This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s44454-025-00014-0
and if you wish to take away this text from our web site please contact us
