This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41598-025-22490-5
and if you wish to take away this text from our website please contact us
Nowacek, D. P., Thorne, L. H., Johston, D. W. & Tyack, P. L. Responses of cetaceans to anthropogenic noise. Mamm. Rev. 37, 81–115 (2007).
Parsons, E. C. M. Impacts of navy sonar on whales and dolphins: Now past a smoking gun?. Front. Mar. Sci. 4, 1–11 (2017).
IUCN. The IUCN purple record of threatened species. Version 2024–1 https://www.iucnredlist.org. Accessed on [10 July 2024].
Tyack, P. L. et al. Beaked whales reply to simulated and precise navy sonar. PLoS ONE 6, e17009 (2011).
Goldbogen, J. A. et al. Blue whales reply to simulated mid-frequency army sonar. Proc. R. Soc. B 280, 20130657 (2013).
Miller, P. J. O. et al. First indications that northern bottlenose whales are delicate to behavioural disturbance from anthropogenic noise. R. Soc. Open Sci. 2, 140484 (2015).
Isojunno, S. et al. Sperm whales scale back foraging effort throughout publicity to 1–2 kHz sonar and killer whale sounds. Ecol. Appl. 26, 77–93 (2016).
Sivle, L. D. et al. Severity of expert-identified behavioural responses of humpback whale, minke whale and northern bottlenose whale to naval sonar. Aquat. Mamm. 41, 469–502 (2015).
Sivle, L. D. et al. Naval sonar disrupts foraging in humpback whales. Mar. Ecol. Prog. Ser. 562, 211–220 (2016).
Falcone, E. A. et al. Diving behaviour of Cuvier’s beaked whales uncovered to 2 sorts of army sonar. R. Soc. Open Sci. 4, 170629 (2017).
Aguilar de Soto, N. et al. Fear of killer whales drives excessive synchrony in deep diving beaked whales. Sci. Rep. 10, 13 (2020).
Joyce, T. W. et al. Behavioral responses of satellite tv for pc tracked Blainville’s beaked whales (Mesoplodon densirostris) to mid-frequency energetic sonar. Mar. Mamm. Sci. 36, 29–46 (2020).
Miller, P. J. O. et al. Behavioral responses to predatory sounds predict sensitivity of cetaceans to anthropogenic noise inside a soundscape of worry. Proc. Natl. Acad. Sci. U.S.A. 119, e2114932119 (2022).
National Research Council. Marine mammal populations and ocean noise: Determining when noise causes biologically vital results (National Academies Press, 2005).
New, L. F., Moretti, D. J., Hooker, S. Okay., Costa, D. P. & Simmons, S. E. Using energetic fashions to analyze the survival and copy of beaked whales (household Ziphiidae). PLoS ONE 8, e68725 (2013).
D’Amico, A. et al. Beaked whale strandings and naval workouts. Aquat. Mamm. 35, 452–472 (2009).
Fernández, A. et al. “Gas and fat embolic syndrome” involving a mass stranding of beaked whales (household Ziphiidae) uncovered to anthropogenic sonar alerts. Vet. Pathol. 42, 446–457 (2005).
Cox, T. M. et al. Understanding the impacts of anthropogenic sound on beaked whales. J. Cetacean Res. Manag. 7, 177–187 (2006).
Bernaldo de Quirós, Y. et al. Advances in analysis on the impacts of anti-submarine sonar on beaked whales. Proc. R. Soc. B 286, 20182533 (2019).
Fahlman, A., Moore, M. J. & Wells, R. S. How do marine mammals handle and normally keep away from fuel emboli formation and fuel embolic pathology? Critical clues from research of untamed dolphins. Front. Mar. Sci. 8, 1–11 (2021).
Fahlman, A. Cardiorespiratory variations in small cetaceans and marine mammals. Exp. Physiol. 109, 324–334 (2024).
Williams, T. M. et al. Physiological responses of narwhals to anthropogenic noise: A case research with seismic airguns and vessel visitors within the Arctic. Funct. Ecol. 36, 2251–2266 (2022).
Baird, R. W. et al. Diving behaviour of Cuvier’s (Ziphius cavirostris) and Blainville’s (Mesoplodon densirostris) beaked whales in Hawai’i. Can. J. Zool. 84, 1120–1128 (2006).
Tyack, P. L., Johnson, M., Soto, N. A., Sturlese, A. & Madsen, P. T. Extreme diving of beaked whales. J. Exp. Biol. 209, 4238–4253 (2006).
Schorr, G. S., Falcone, E. A., Moretti, D. J. & Andrews, R. D. First long-term behavioral information from Cuvier’s beaked whales (Ziphius cavirostris) reveal record-breaking dives. PLoS ONE 9, e91553 (2014).
Shearer, J. et al. Diving behaviour of Cuvier’s beaked whales (Ziphius cavirostris) off Cape Hatteras. North Carolina. R. Soc. Open Sci. 6, 181728 (2019).
Stimpert, A. Okay. et al. Acoustic and foraging conduct of a Baird’s beaked whale, Berardius bairdii, uncovered to simulated sonar. Sci. Rep. 4, 7031 (2014).
Coates, S. N. et al. Insights into foraging conduct from multi-day sound recording tags on goose-beaked whales (Ziphius cavirostris) within the Southern California Bight. Front. Mar. Sci. 11, 1415602 (2024).
Zimmer, W. M. X. & Tyack, P. L. Repetitive shallow dives pose decompression threat in deep-diving beaked whales. Mar. Mamm. Sci. 23, 888–925 (2007).
Baird, R. W., Webster, D. L., Schorr, G. S., McSweeney, D. J. & Barlow, J. Diel variation in beaked whale diving conduct. Mar. Mamm. Sci. 24, 630–642 (2008).
Hooker, S. Okay., Baird, R. W. & Fahlman, A. Could beaked whales get the bends?. Respir. Physiol. Neurobiol. 167, 235–246 (2009).
Joyce, T. W. et al. Physiological, morphological, and ecological tradeoffs affect vertical habitat use of deep-diving toothed-whales within the Bahamas. PLoS ONE 12, e0185113 (2017).
Quick, N. J., Cioffi, W. R., Shearer, J. M., Fahlman, A. & Read, A. J. Extreme diving in mammals: First estimates of behavioural cardio dive limits in Cuvier’s beaked whales. J. Exp. Biol. 225, jeb222109 (2020).
Velten, B. P., Dillaman, R. M., Kinsey, S. T., McLellan, W. A. & Pabst, D. A. Novel locomotor muscle design in excessive deep-diving whales. J. Exp. Biol. 216, 1862–1871 (2013).
Sierra, E. et al. Comparative histology of muscle in free ranging cetaceans: Shallow versus deep diving species. Sci. Rep. 5, 15909 (2015).
Pabst, D. A., McLellan, W. A. & Rommel, S. A. How to construct a deep diver: The excessive morphology of mesoplodonts. Integr. Comp. Biol. 56, 1337–1348 (2016).
Kooyman, G. L. Diverse divers (Springer, Berlin, Heidelberg, 1989).
Martín López, L. M., Miller, P. J. O., Aguilar de Soto, N. & Johnson, M. P. Gait switches in deep-diving beaked whales: Biomechanical methods for long-duration dives. J. Exp. Biol. 218, 1325–1338 (2015).
Visser, F., Oudejans, M. G., Keller, O. A., Madsen, P. T. & Johnson, M. Sowerby’s beaked whale biosonar and motion technique point out deep-sea foraging area of interest differentiation in mesoplodont whales. J. Exp. Biol. 225, 9 (2022).
Harris, M., Berg, W. E., Whitaker, D. M., Twitty, V. C. & Blinks, L. R. Carbon dioxide as a facilitating agent within the initiation and development of bubbles in animals decompressed to simulated altitudes. J. Gen. Physiol. 28, 225–240 (1945).
Harvey, E. N. et al. Bubble formation in animals. I. Physical components. J. Cell. Comp. Physiol. 24, 1–22 (1944).
DeRuiter, S. L. et al. First direct measurements of behavioural responses by Cuvier’s beaked whales to mid-frequency energetic sonar. Biol. Lett. 9, 20130223 (2013).
Wensveen, P. J. et al. Northern bottlenose whales in a pristine atmosphere reply strongly to shut and distant navy sonar alerts. Proc. R. Soc. B 286, 20182592 (2019).
Hooker, S. Okay. et al. Deadly diving? Physiological and behavioural administration of decompression stress in diving mammals. Proc. R. Soc. B 279, 1041–1050 (2012).
Department of the Navy (DoN). Technical report: standards and thresholds for U.S. Navy acoustic and explosive results evaluation (Phase III). (SSC Pacific, San Diego, California, 2017).
Johnson, M. P. & Tyack, P. L. A digital acoustic recording tag for measuring the response of untamed marine mammals to sound. IEEE J. Oceanic Eng. 28, 3–12 (2003).
Kvadsheim, P. Estimated tissue and blood N2 ranges and threat of decompression illness in deep-, intermediate-, and shallow-diving toothed whales throughout publicity to naval sonar. Front. Physiol. 3, 125 (2012).
Visser, F. et al. Deep-sea predator area of interest segregation revealed by mixed cetacean biologging and eDNA evaluation of cephalopod prey. Sci. Adv. 7, 5908–5939 (2021).
Michelot, T., Glennie, R., Thomas, L., Quick, N., Harris, C.M. Continuous-time modelling of behavioural responses in animal motion. (2022).
Siegal, E., Hooker, S. Okay., Isojunno, S. & Miller, P. J. O. Beaked whales and state-dependent decision-making: How does physique situation have an effect on the trade-off between foraging and predator avoidance?. Proc. R. Soc. B 289, 20212345 (2022).
Hooker, S. Okay. & Baird, R. W. Deep–diving behaviour of the northern bottlenose whale, Hyperoodon ampullatus (Cetacea: Ziphiidae). Proc. R. Soc. Lond. B Biol. Sci. 266, 671–676 (1999).
Sato, Okay. et al. Stroke frequency, however not swimming pace, is expounded to physique dimension in free-ranging seabirds, pinnipeds and cetaceans. Proc. R. Soc. B 274, 471–477 (2007).
Miller, P. J. O., Johnson, M. P., Tyack, P. L. & Terray, E. A. Swimming gaits, passive drag and buoyancy of diving sperm whales Physeter macrocephalus. J. Exp. Biol. 207, 1953–1967 (2004).
Pacini, A. F. et al. Audiogram of a stranded Blainville’s beaked whale (Mesoplodon densirostris) measured utilizing auditory evoked potentials. J. Exp. Biol. 214, 2409–2415 (2011).
Watanabe, S. Asymptotic equivalence of Bayes cross validation and extensively relevant info criterion in singular studying idea. J. Mach. Learn. Res. 11, 3571–3594 (2010).
Balcomb, Okay. & Claridge, D. E. A mass stranding of cetaceans attributable to naval sonar within the Bahamas. Bahamas J. Sci. 8, 1022–2189 (2001).
Whitaker, D. M., Blinks, L. R., Berg, W. E., Twitty, V. C. & Harris, M. Muscular exercise and bubble formation in animals decompressed to simulated altitudes. J. Gen. Physiol. 28, 213–223 (1945).
McCarthy, E. et al. Changes in spatial and temporal distribution and vocal conduct of Blainville’s beaked whales (Mesoplodon densirostris) throughout multiship workouts with mid-frequency sonar. Mar. Mamm. Sci. 27, E206–E226 (2011).
Moretti, D. et al. A threat operate for behavioral disruption of Blainville’s beaked whales (Mesoplodon densirostris) from mid-frequency energetic sonar. PLoS ONE 9, e85064 (2014).
Fahlman, A., Tyack, P. L., Miller, P. J. O. & Kvadsheim, P. H. How man-made interference would possibly trigger fuel bubble emboli in deep diving whales. Front. Physiol. 5, 1–8 (2014).
Fahlman, A. et al. Surface and diving metabolic charges, and dynamic cardio dive limits (dADL) in near- and off-shore bottlenose dolphins, Tursiops spp., point out that deep diving is energetically low cost. Mar. Mamm. Sci. 39, 976–993 (2023).
Antunes, R. et al. High thresholds for avoidance of sonar by free-ranging long-finned pilot whales (Globicephala melas). Mar. Pollut. Bull. 83, 165–180 (2014).
Isojunno, S., Aoki, Okay., Curé, C., Kvadsheim, P. H. & Miller, P. J. Breathing patterns point out price of train throughout diving and response to experimental sound exposures in long-finned pilot whales. Front. Physiol. 9, 1462 (2018).
This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41598-025-22490-5
and if you wish to take away this text from our website please contact us
