Boiling oceans and compressional tectonics on rising ocean worlds

This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
https://www.nature.com/articles/s41550-025-02713-5
and if you wish to take away this text from our website please contact us


  • Roth, L. et al. Transient water vapor at Europa’s South Pole. Science 343, 171–174 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Porco, C. C. et al. Cassini observes the lively South Pole of Enceladus. Science 311, 1393–1401 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Fagents, S. A., Lopes, R. M., Quick, L. C. & Gregg, T. Okay. in Planetary Volcanism throughout the Solar System (eds Gregg, T. Okay. P. et al) 161–234 (Elsevier, 2022).

  • Hussmann, H. & Spohn, T. Thermal-orbital evolution of Io and Europa. Icarus 171, 391–410 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Showman, A. P., Stevenson, D. J. & Malhotra, R. Coupled orbital and thermal evolution of Ganymede. Icarus 129, 367–383 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Tobie, G. et al. Tidal deformation and dissipation processes in icy worlds. Space Sci. Rev. 221, 6 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Moore, W. B. & Schubert, G. The tidal response of Europa. Icarus 147, 317–319 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Kamata, S., Matsuyama, I. & Nimmo, F. Tidal resonance in icy satellites with subsurface oceans. J. Geophys. Res. E 120, 1528–1542 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Manga, M. & Wang, C.-Y. Pressurized oceans and the eruption of liquid water on Europa and Enceladus. Geophys. Res. Lett. 34, L07202 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Beuthe, M. Spatial patterns of tidal heating. Icarus 223, 308–329 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Běhounková, M., Tobie, G., Choblet, G. & Čadek, O. Tidally-induced melting occasions because the origin of South-Pole exercise on Enceladus. Icarus 219, 655–664 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Nimmo, F. Stresses generated in cooling viscoelastic ice shells: software to Europa. J. Geophys. Res. E 109, E12001 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Rudolph, M. L., Manga, M., Walker, M. & Rhoden, A. R. Cooling crusts create concomitant cryovolcanic cracks. Geophys. Res. Lett. 49, e2021GL094421 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Rhoden, A. R., Walker, M. E., Rudolph, M. L., Bland, M. T. & Manga, M. The evolution of a younger ocean inside Mimas. Earth Planet. Sci. Lett. 635, 118689 (2024).

    Article 

    Google Scholar
     

  • Rhoden, A. R., Rudolph, M. L. & Manga, M. The challenges of driving Charon’s cryovolcanism from a freezing ocean. Icarus 392, 115391 (2023).

    Article 

    Google Scholar
     

  • Tajeddine, R. et al. Constraints on Mimas’ inside from Cassini ISS libration measurements. Science 346, 322–324 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Lainey, V. et al. A lately fashioned ocean inside Saturn’s moon Mimas. Nature 626, 280–282 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Baillié, Okay., Noyelles, B., Lainey, V., Charnoz, S. & Tobie, G. Formation of the Cassini Division. I. Shaping the rings by Mimas inward migration. Mon. Not. R. Astron. Soc. 486, 2933–2946 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Noyelles, B., Baillié, Okay., Charnoz, S., Lainey, V. & Tobie, G. Formation of the Cassini Division. II. Possible histories of Mimas and Enceladus. Mon. Not. R. Astron. Soc. 486, 2947–2963 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Strom, C., Nordheim, T. A., Patthoff, D. A. & Fieber-Beyer, S. Okay. Constraining ocean and ice shell thickness on Miranda from floor geological buildings and stress modeling. Planet. Sci. J. 5, 226 (2024).

    Article 

    Google Scholar
     

  • Hemingway, D. J. & Mittal, T. Enceladus’s ice shell construction as a window on inside warmth manufacturing. Icarus 332, 111–131 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Fuller, J., Luan, J. & Quataert, E. Resonance locking because the supply of speedy tidal migration within the Jupiter and Saturn moon techniques. Mon. Not. R. Astron. Soc. 458, 3867–3879 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Tobie, G., Čadek, O. & Sotin, C. Solid tidal friction above a liquid water reservoir because the origin of the South Pole hotspot on Enceladus. Icarus 196, 642–652 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Meyer, J. & Wisdom, J. Tidal heating in Enceladus. Icarus 188, 535–539 (2007).

    Article 
    ADS 

    Google Scholar
     

  • McKinnon, W. B. & Schenk, P. Is Mimas hole? In Proc. AGU Fall Meeting P32A-05 (American Geophysical Union, 2024); https://agu.confex.com/agu/agu24/meetingapp.cgi/Paper/1707025

  • McKinnon, W. B. & Schenk, P. Is Mimas a Dyson satellite tv for pc? The destiny of small melting moons. In Proc. 56th Lunar Planetary Science Conference 2897 (USRA, 2025); https://www.hou.usra.edu/meetings/lpsc2025/pdf/2897.pdf

  • Hemingway, D. J., Rudolph, M. L. & Manga, M. Cascading parallel fractures on Enceladus. Nat. Astron. 4, 234–239 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Arakawa, M. & Maeno, N. Mechanical energy of polycrystalline ice beneath uniaxial compression. Cold Reg. Sci. Technol. 26, 215–229 (1997).

    Article 

    Google Scholar
     

  • Jones, S. J. The confined compressive energy of polycrystalline ice. J. Glaciol. 28, 171–178 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Schulson, E. M. Brittle failure of ice. Eng. Fract. Mech. 68, 1839–1887 (2001).

    Article 

    Google Scholar
     

  • Potter, R. S., Cammack, J. M., Braithwaite, C. H., Church, P. D. & Walley, S. M. A research of the compressive mechanical properties of defect-free, porous and sintered water-ice at high and low pressure charges. Icarus 351, 113940 (2020).

    Article 

    Google Scholar
     

  • Schulson, E. M. & Renshaw, C. E. Fracture, friction, and permeability of ice. Annu. Rev. Earth Planet. Sci. 50, 323–343 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Cochrane, C. J., Vance, S. D., Castillo-Rogez, J. C., Styczinski, M. J. & Liuzzo, L. Stronger proof of a subsurface ocean inside Callisto from a multifrequency investigation of its induced magnetic subject. AGU Adv. 6, e2024AV001237 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Nagel, Okay., Breuer, D. & Spohn, T. A mannequin for the inside construction, evolution, and differentiation of Callisto. Icarus 169, 402–412 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Hillier, J. & Squyres, S. W. Thermal stress tectonics on the satellites of Saturn and Uranus. J. Geophys. Res. E 96, 15665–15674 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Hurford, T. A., Helfenstein, P., Hoppa, G. V., Greenberg, R. & Bills, B. G. Eruptions arising from tidally managed periodic openings of rifts on Enceladus. Nature 447, 292–294 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Ingersoll, A. P. & Nakajima, M. Controlled boiling on Enceladus. 2. Model of the liquid-filled cracks. Icarus 272, 319–326 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, P., Manucharyan, G. E., Thompson, A. F., Goodman, J. C. & Vance, S. D. The affect of meridional ice transport on Europa’s ocean stratification and warmth content material. Geophys. Res. Lett. 44, 5969–5977 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Shibley, N. C. & Laughlin, G. Do oceanic convection and clathrate dissociation drive Europa’s geysers? Planet. Sci. J. 2, 221 (2021).

    Article 

    Google Scholar
     

  • Mitchell, Okay. L., Rabinovitch, J., Scamardella, J. C. & Cable, M. L. A proposed mannequin for cryovolcanic exercise on Enceladus pushed by risky exsolution. J. Geophys. Res. E 129, e2023JE007977 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Matson, D. L., Castillo-Rogez, J. C., Davies, A. G. & Johnson, T. V. Enceladus: a speculation for bringing each warmth and chemical compounds to the floor. Icarus 221, 53–62 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Crawford, G. D. & Stevenson, D. J. Gas-driven water volcanism within the resurfacing of Europa. Icarus 73, 66–79 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Rudolph, M. L. & Manga, M. Fracture penetration in planetary ice shells. Icarus 199, 536–541 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Buffo, J. J., Meyer, C. R. & Parkinson, J. R. G. Dynamics of a solidifying icy satellite tv for pc shell. J. Geophys. Res. E 126, e2020JE006741 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Buffo, J. J., Schmidt, B. E., Huber, C. & Meyer, C. R. Characterizing the ice-ocean interface of icy worlds: a theoretical strategy. Icarus 360, 114318 (2021).

    Article 

    Google Scholar
     

  • Turcotte, D. L. & Schubert, G. Geodynamics 2nd edn (Cambridge Univ. Press, 2002).

  • Shoji, D., Hussmann, H., Sohl, F. & Kurita, Okay. Non-steady state tidal heating of Enceladus. Icarus 235, 75–85 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Goldreich, P., Lithwick, Y. & Luan, J. Enceladus’s restrict cycle. Astrophys. J. 992, 28 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Greenberg, R. et al. in Uranus (eds Bergstralh, J. T. et al.) 693–735 (Univ. Arizona Press, 1991).

  • Pappalardo, R. T., Reynolds, S. J. & Greeley, R. Extensional tilt blocks on Miranda: proof for an upwelling origin of Arden Corona. J. Geophys. Res. E 102, 13369–13379 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Hammond, N. P. & Barr, A. C. Global resurfacing of Uranus’s moon Miranda by convection. Geology 42, 931–934 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Tittemore, W. C. & Wisdom, J. Tidal evolution of the Uranian satellites. II. An clarification of the anomalously excessive orbital inclination of Miranda. Icarus 78, 63–89 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Croft, S. & Soderblom, L. in Uranus (eds Bergstralh, J. T. et al.) 561–628 (Univ. Arizona Press, 1991).

  • Hussmann, H., Sohl, F. & Spohn, T. Subsurface oceans and deep interiors of medium-sized outer planet satellites and huge trans-Neptunian objects. Icarus 185, 258–273 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Bierson, C. J. & Nimmo, F. A notice on the potential for subsurface oceans on the Uranian satellites. Icarus 373, 114776 (2022).

    Article 

    Google Scholar
     

  • Beddingfield, C. B., Leonard, E. J., Nordheim, T. A., Cartwright, R. J. & Castillo-Rogez, J. C. Titania’s warmth fluxes revealed by Messina Chasmata. Planet. Sci. J. 4, 211 (2023).

    Article 

    Google Scholar
     

  • Porco, C. C. et al. Cassini imaging science: preliminary outcomes on Phoebe and Iapetus. Science 307, 1237–1242 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Giese, B. et al. The topography of Iapetus’ main facet. Icarus 193, 359–371 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Ip, W.-H. On a hoop origin of the equatorial ridge of Iapetus. Geophys. Res. Lett. (2006).

  • Levison, H. F., Walsh, Okay. J., Barr, A. C. & Dones, L. Ridge formation and de-spinning of Iapetus by way of an impact-generated satellite tv for pc. Icarus 214, 773–778 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Dombard, A. J., Cheng, A. F., McKinnon, W. B. & Kay, J. P. Delayed formation of the equatorial ridge on Iapetus from a subsatellite created in an enormous influence. J. Geophys. Res. E (2012).

  • Detelich, C. E., Byrne, P. Okay., Dombard, A. J. & Schenk, P. M. The morphology and age of the Iapetus equatorial ridge helps an exogenic origin. Icarus 367, 114559 (2021).

    Article 

    Google Scholar
     

  • Stickle, A. M. & Roberts, J. H. Modeling an exogenic origin for the equatorial ridge on Iapetus. Icarus 307, 197–206 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Sandwell, D. & Schubert, G. A contraction mannequin for the flattening and equatorial ridge of Iapetus. Icarus 210, 817–822 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Ćuk, M. et al. Long-term evolution of the Saturnian system. Space Sci. Rev. 220, 20 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Castillo-Rogez, J. C. et al. Iapetus’ geophysics: rotation price, form, and equatorial ridge. Icarus 190, 179–202 (2007).

    Article 
    ADS 

    Google Scholar
     

  • National Academies of Sciences, Engineering, and Medicine. Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023-2032 (National Academies Press, 2023).

  • Jaeger, J. C., Cook, N. G. & Zimmerman, R. Fundamentals of Rock Mechanics (Wiley, 2009).

  • Petrenko, V. F. & Whitworth, R. W. Physics of Ice (Oxford Univ. Press, 1999).


    Google Scholar
     

  • Rudolph, M. & Rhoden, A. PISTES: planetary ice shell thermal evolution and stress. Zenodo (2025).

  • Nimmo, F., Bierson, C. & McKinnon, W. B. Pluto and Triton: Interior Structures, Lithospheres and Potential for Oceans (IOP Publishing, 2025).


  • This web page was created programmatically, to learn the article in its authentic location you possibly can go to the hyperlink bellow:
    https://www.nature.com/articles/s41550-025-02713-5
    and if you wish to take away this text from our website please contact us

    Leave a Reply

    Your email address will not be published. Required fields are marked *