Swimming is superior to operating in inducing physiological cardiac hypertrophy and enhancing myocardial efficiency

This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
https://www.nature.com/articles/s41598-026-36818-2
and if you wish to take away this text from our web site please contact us


  • Bernardo, B. C., Ooi, J. Y. Y., Weeks, Ok. L., Patterson, N. L. & McMullen, J. R. Understanding key mechanisms of Exercise-Induced cardiac safety to mitigate illness: present information and rising ideas. Physiol. Rev. 98 (1), 419–475 (2018).


    Google Scholar
     

  • Nakamura, M. & Sadoshima, J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol. 15 (7), 387–407 (2018).


    Google Scholar
     

  • Pelliccia, A., Culasso, F., Di Paolo, F. M. & Maron, B. J. Physiologic left ventricular cavity dilatation in elite athletes. Ann. Intern. Med. 130 (1), 23–31 (1999).


    Google Scholar
     

  • Hoogsteen, J. et al. Myocardial adaptation in numerous endurance sports activities: an echocardiographic research. Int. J. Cardiovasc. Imaging. 20 (1), 19–26 (2004).


    Google Scholar
     

  • Contarteze, R. V. L., Manchado, F. B., Gobatto, C. A. & De Mello, M. A. R. Stress biomarkers in rats submitted to swimming and treadmill operating workout routines. Comp. Biochem. Physiol. Mol. Integr. Physiol. 151 (3), 415–422 (2008).


    Google Scholar
     

  • Wang, Y., Wisloff, U. & Kemi, O. J. Animal fashions within the research of exercise-induced cardiac hypertrophy. Physiol. Res. 59 (5), 633–644 (2010).


    Google Scholar
     

  • Schaible, T. F. & Scheuer, J. Effects of bodily coaching by operating or swimming on ventricular efficiency of rat hearts. J. Appl. Physiol. Respir Environ. Exerc. Physiol. 46 (4), 854–860 (1979).


    Google Scholar
     

  • Yoshizaki, A. et al. Swimming coaching improves myocardial Mechanics, prevents Fibrosis, and alters expression of Ca2 + Handling proteins in older rats. J. Gerontol. Biol. Sci. Med. Sci. 73 (4), 468–474 (2018).


    Google Scholar
     

  • Serra, A. J. et al. Exercise coaching inhibits inflammatory cytokines and greater than prevents myocardial dysfunction in rats with sustained beta-adrenergic hyperactivity. J. Physiol. 588 (Pt 13), 2431–2442 (2010).


    Google Scholar
     

  • Ceci, M., Ross, J. Jr. & Condorelli, G. Molecular determinants of the physiological adaptation to emphasize within the cardiomyocyte: a deal with AKT. J. Mol. Cell. Cardiol. 37 (5), 905–912 (2004).


    Google Scholar
     

  • Kemi, O. J. et al. Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. J. Cell. Physiol. 214 (2), 316–321 (2008).


    Google Scholar
     

  • Catalucci, D., Latronico, M. V. & Condorelli, G. MicroRNAs management gene expression: significance for cardiac growth and pathophysiology. Ann. N Y Acad. Sci. 1123, 20–29 (2008).


    Google Scholar
     

  • Fernandes, T., Barauna, V. G., Negrao, C. E., Phillips, M. I. & Oliveira, E. M. Aerobic train coaching promotes physiological cardiac transforming involving a set of MicroRNAs. Am. J. Physiol. Heart Circ. Physiol. 309 (4), H543–H552 (2015).


    Google Scholar
     

  • Liu, X. et al. miR-222 is important for exercise-induced cardiac development and protects in opposition to pathological cardiac transforming. Cell. Metab. 21 (4), 584–595 (2015).


    Google Scholar
     

  • DeBosch, B. et al. Akt1 is required for physiological cardiac development. Circulation 113 (17), 2097–2104 (2006).


    Google Scholar
     

  • Ma, Z., Qi, J., Meng, S., Wen, B. & Zhang, J. Swimming train training-induced left ventricular hypertrophy entails MicroRNAs and synergistic regulation of the PI3K/AKT/mTOR signaling pathway. Eur. J. Appl. Physiol. 113 (10), 2473–2486 (2013).


    Google Scholar
     

  • Sanchis-Gomar, F. et al. Circulating MicroRNAs fluctuations in exercise-induced cardiac transforming: A scientific assessment. Am. J. Transl Res. 13 (12), 13298–13309 (2021).


    Google Scholar
     

  • Bodine, S. C. mTOR signaling and the molecular adaptation to resistance train. Med. Sci. Sports Exerc. 38 (11), 1950–1957 (2006).


    Google Scholar
     

  • Millet, G. P. et al. Modeling the transfers of coaching results on efficiency in elite triathletes. Int. J. Sports Med. 23 (1), 55–63 (2002).


    Google Scholar
     

  • Tanaka, H. Effects of cross-training. Transfer of coaching results on VO2max between biking, operating, and swimming. Sports Med. 18 (5), 330–339 (1994).


    Google Scholar
     

  • Jones, J. H. J. Resource ebook for the design of animal train protocols. Am. J. Vet. Res. 68 (6), 583 (2007).


    Google Scholar
     

  • Vigelso, A., Andersen, N. B. & Dela, F. The relationship between skeletal muscle mitochondrial citrate synthase exercise and complete physique oxygen uptake variations in response to train coaching. Int. J. Physiol. Pathophysiol Pharmacol. 6 (2), 84–101 (2014).


    Google Scholar
     

  • Bylund, A. C. et al. Physical coaching in man. Skeletal muscle metabolism in relation to muscle morphology and operating capability. Eur. J. Appl. Physiol. Occup. Physiol. 36 (3), 151–169 (1977).


    Google Scholar
     

  • Veiga, E. C. et al. Cardiac implications after myocardial infarction in rats beforehand present process bodily train. Arq. Bras. Cardiol. 100 (1), 37–43 (2013).


    Google Scholar
     

  • dos Santos, L., Antonio, E. L., Souza, A. F. & Tucci, P. J. Use of afterload hemodynamic stress as a sensible methodology for assessing cardiac efficiency in rats with coronary heart failure. Can. J. Physiol. Pharmacol. 88 (7), 724–732 (2010).


    Google Scholar
     

  • Kuo, P. L. et al. Myocyte form regulates lateral registry of sarcomeres and contractility. Am. J. Pathol. 181 (6), 2030–2037 (2012).


    Google Scholar
     

  • Kawai, M., Karam, T. S., Michael, J. J., Wang, L. & Chandra, M. Comparison of elementary steps of the cross-bridge cycle in rat papillary muscle fibers expressing alpha- and beta-myosin heavy chain with sinusoidal evaluation. J. Muscle Res. Cell. Motil. 37 (6), 203–214 (2016).


    Google Scholar
     

  • Locher, M. R., Razumova, M. V., Stelzer, J. E., Norman, H. S. & Moss, R. L. Effects of low-level & alpha;-myosin heavy chain expression on contractile kinetics in Porcine myocardium. Am. J. Physiol. Heart Circ. Physiol. 300 (3), H869–H878 (2011).


    Google Scholar
     

  • Sevrieva, I. R. et al. Cardiac myosin regulatory mild chain kinase modulates cardiac contractility by phosphorylating each myosin regulatory mild chain and troponin I. J. Biol. Chem. 295 (14), 4398–4410 (2020).


    Google Scholar
     

  • Toepfer, C. N., West, T. G. & Ferenczi, M. A. Revisiting Frank-Starling: regulatory mild chain phosphorylation alters the speed of pressure redevelopment (ktr) in a length-dependent style. J. Physiol. 594 (18), 5237–5254 (2016).


    Google Scholar
     

  • McNamara, J. W., Singh, R. R. & Sadayappan, S. Cardiac myosin binding protein-C phosphorylation regulates the super-relaxed state of myosin. Proc. Natl. Acad. Sci. U S A. 116 (24), 11731–11736 (2019).


    Google Scholar
     

  • Fitzsimons, D. P., Bodell, P. W. & Baldwin, Ok. M. Phosphorylation of rodent cardiac myosin mild chain 2: results of train. J. Appl. Physiol. (1985). 67 (6), 2447–2453 (1989).


    Google Scholar
     

  • Chakouri, N. et al. Stress-induced protein S-glutathionylation and phosphorylation crosstalk in cardiac sarcomeric proteins – Impact on coronary heart perform. Int. J. Cardiol. 258, 207–216 (2018).


    Google Scholar
     

  • Kemi, O. J. et al. Aerobic interval coaching enhances cardiomyocyte contractility and Ca2 + biking by phosphorylation of camkii and Thr-17 of phospholamban. J. Mol. Cell. Cardiol. 43 (3), 354–361 (2007).


    Google Scholar
     

  • Schaible, T. F. & Scheuer, J. Cardiac perform in hypertrophied hearts from chronically exercised feminine rats. J. Appl. Physiol. Respir Environ. Exerc. Physiol. 50 (6), 1140–1145 (1981).


    Google Scholar
     

  • Tang, X. Y. et al. Effects of train of various intensities on the angiogenesis, infarct therapeutic, and performance of the left ventricle in postmyocardial infarction rats. Coron. Artery Dis. 22 (7), 497–506 (2011).


    Google Scholar
     

  • Rodrigues, F. et al. Cardioprotection afforded by train coaching previous to myocardial infarction is related to autonomic perform enchancment. BMC Cardiovasc. Disord. 14, 84 (2014).


    Google Scholar
     

  • Serra, A. J. et al. Exercise coaching prevents beta-adrenergic hyperactivity-induced myocardial hypertrophy and lesions. Eur. J. Heart Fail. 10 (6), 534–539 (2008).


    Google Scholar
     

  • Lavorato, V. N. et al. Mesenchymal stem cell remedy related to endurance train coaching: results on the structural and practical transforming of infarcted rat hearts. J. Mol. Cell. Cardiol. 90, 111–119 (2016).


    Google Scholar
     

  • Lorell, B. H. & Carabello, B. A. Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation 102 (4), 470–479 (2000).


    Google Scholar
     

  • Claessens, C. et al. Structural coronary heart variations in triathletes. Acta Cardiol. 54 (6), 317–325 (1999).


    Google Scholar
     

  • Fathi, M., Gharakhanlou, R. & Rezaei, R. The modifications of coronary heart miR-1 and miR-133 expressions following physiological hypertrophy as a consequence of endurance coaching. Cell. J. 22 (Suppl 1), 133–140 (2020).


    Google Scholar
     

  • Soci, U. P. et al. MicroRNAs 29 are concerned within the enchancment of ventricular compliance promoted by cardio train coaching in rats. Physiol. Genomics. 43 (11), 665–673 (2011).


    Google Scholar
     

  • Ghalehgir, S., Vakili, J., Khani, M. & Alamdari, A. The impact of eight weeks excessive depth interval coaching on the expression of cardiac miRNA-21 and miRNA-1 in Wistar male rats. J. Sport Exerc. Physiol. 15 (4), 82–92 (2022).


    Google Scholar
     

  • Yang, G. & Yang, W. Regulating the expression of exercise-induced micro-RNAs and lengthy non-coding rnas: implications for controlling cardiovascular illnesses and coronary heart failure. Front. Mol. Biosci. 12, 1587124 (2025). Published 2025 May 20.


    Google Scholar
     

  • Fernandes, T. et al. Aerobic train training-induced left ventricular hypertrophy entails regulatory MicroRNAs, decreased angiotensin-converting enzyme-angiotensin ii, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1–7). Hypertension 58 (2), 182–189 (2011).


    Google Scholar
     

  • Liu, X., Platt, C. & Rosenzweig, A. The position of MicroRNAs within the cardiac response to train. Cold Spring Harb Perspect. Med. 7 (12), a029850 (2017).


    Google Scholar
     

  • Fernandes, T., Soci, U. P. & Oliveira, E. M. Eccentric and concentric cardiac hypertrophy induced by train coaching: MicroRNAs and molecular determinants. Braz J. Med. Biol. Res. 44 (9), 836–847 (2011).


    Google Scholar
     

  • Guimaraes, G. G. et al. Exercise induces renin-angiotensin system unbalance and excessive collagen expression within the coronary heart of Mas-deficient mice. Peptides 38 (1), 54–61 (2012).


    Google Scholar
     

  • Ma, S. & Liao, Y. Noncoding RNAs in exercise-induced cardio-protection for power coronary heart failure. EBioMedicine 46, 532–540 (2019).


    Google Scholar
     

  • Palabiyik, O. et al. Alteration in cardiac PI3K/Akt/mTOR and ERK signaling pathways with using development hormone and swimming, and the roles of miR21 and miR133. Biomed. Rep. 0 (0), 1–10 (2019).


    Google Scholar
     

  • Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273 (22), 13375–13378 (1998).


    Google Scholar
     

  • Weeks, Ok. L., Bernardo, B. C., Ooi, J. Y. Y., Patterson, N. L. & McMullen, J. R. The IGF1-PI3K-Akt signaling pathway in mediating Exercise-Induced cardiac hypertrophy and safety. Adv. Exp. Med. Biol. 1000, 187–210 (2017).


    Google Scholar
     

  • Tham, Y. Ok., Bernardo, B. C., Ooi, J. Y., Weeks, Ok. L. & McMullen, J. R. Pathophysiology of cardiac hypertrophy and coronary heart failure: signaling pathways and novel therapeutic targets. Arch. Toxicol. 89 (9), 1401–1438 (2015).


    Google Scholar
     

  • Wu, G., Zhang, X. & Gao, F. The epigenetic panorama of train in cardiac well being and illness. J. Sport Health Sci. 10 (6), 648–659 (2020).

  • Morisco, C. et al. Glycogen synthase kinase 3beta regulates GATA4 in cardiac myocytes. J. Biol. Chem. 276 (30), 28586–28597 (2001).


    Google Scholar
     

  • Ikeda, S. et al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol. Cell. Biol. 29 (8), 2193–2204 (2009).


    Google Scholar
     

  • Woodcock, H. V. et al. The mTORC1/4E-BP1 axis represents a vital signaling node throughout fibrogenesis. Nat. Commun. 10 (1), 6 (2019).


    Google Scholar
     

  • Zhang, J., Gao, Z. & Ye, J. Phosphorylation and degradation of S6K1 (p70S6K1) in response to persistent JNK1 activation. Biochim. Biophys. Acta. 1832 (12), 1980–1988 (2013).


    Google Scholar
     

  • McArdle, W. D. Metabolic stress of endurance swimming within the laboratory rat. J. Appl. Physiol. 22 (1), 50–54 (1967).


    Google Scholar
     

  • Wisloff, U., Helgerud, J., Kemi, O. J. & Ellingsen, O. Intensity-controlled treadmill operating in rats: VO(2 max) and cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 280 (3), H1301–H1310 (2001).


    Google Scholar
     

  • Yoshizaki, A. et al. Swimming coaching improves myocardial Mechanics, prevents Fibrosis, and alters expression of Ca2+ dealing with proteins in older rats. J. Gerontol. Biol. Sci. Med. Sci. 73 (4), 468–474 (2018).


    Google Scholar
     

  • Souza Vieira, S. et al. Increased myocardial retention of mesenchymal stem cells Post-MI by Pre-Conditioning train coaching. Stem Cell. Rev. Rep. 16 (4), 730–741 (2020).


    Google Scholar
     

  • Manchini, M. T. et al. Low-Level laser utility within the early myocardial infarction stage has no helpful position in coronary heart failure. Front. Physiol. 8, 23 (2017).


    Google Scholar
     

  • Feliciano, R. D. S. et al. Photobiomodulation remedy on myocardial infarction in rats: transcriptional and posttranscriptional implications to cardiac transforming. Lasers Surg. Med. 53 (9), 1247–1257 (2021).


    Google Scholar
     

  • de Melo, B. L. et al. Exercise coaching attenuates proper ventricular transforming in rats with pulmonary arterial stenosis. Front. Physiol. 7, 541 (2016).


    Google Scholar
     


  • This web page was created programmatically, to learn the article in its unique location you’ll be able to go to the hyperlink bellow:
    https://www.nature.com/articles/s41598-026-36818-2
    and if you wish to take away this text from our web site please contact us